1 /** 2 * SHA intrinsics. 3 * 4 * Copyright: Guillaume Piolat 2021. 5 * Johan Engelen 2021. 6 * License: $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0) 7 */ 8 module inteli.shaintrin; 9 10 // SHA instructions 11 // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#othertechs=SHA 12 // Note: this header will work whether you have SHA enabled or not. 13 // With LDC, use "dflags-ldc": ["-mattr=+sha"] or equivalent to actively 14 // generate SHA instructions. 15 16 public import inteli.types; 17 import inteli.internals; 18 19 static if (LDC_with_SHA) 20 { 21 private enum SHA_builtins = true; 22 } 23 else static if (GDC_with_SHA) 24 { 25 private enum SHA_builtins = true; 26 } 27 else 28 { 29 private enum SHA_builtins = false; 30 } 31 32 nothrow @nogc: 33 34 /+ 35 /// Perform an intermediate calculation for the next four SHA1 message values (unsigned 32-bit integers) using previous message values from a and b, and store the result in dst. 36 __m128i _mm_sha1nexte_epu32(__m128i a, __m128i b) @trusted 37 { 38 static if (SHA_builtins) 39 { 40 return __builtin_ia32_sha1nexte(cast(int4) a, cast(int4) b); 41 } 42 else 43 { 44 assert(0); 45 } 46 } 47 unittest 48 { 49 } 50 +/ 51 52 /+ 53 /// Perform the final calculation for the next four SHA1 message values (unsigned 32-bit integers) using the intermediate result in a and the previous message values in b, and store the result in dst. 54 __m128i _mm_sha1msg1_epu32(__m128i a, __m128i b) @trusted 55 { 56 static if (SHA_builtins) 57 { 58 return __builtin_ia32_sha1msg1(cast(int4) a, cast(int4) b); 59 } 60 else 61 { 62 assert(0); 63 } 64 } 65 unittest 66 { 67 } 68 +/ 69 70 /+ 71 /// Calculate SHA1 state variable E after four rounds of operation from the current SHA1 state variable a, add that value to the scheduled values (unsigned 32-bit integers) in b, and store the result in dst. 72 __m128i _mm_sha1msg2_epu32(__m128i a, __m128i b) @trusted 73 { 74 static if (SHA_builtins) 75 { 76 return __builtin_ia32_sha1msg2(cast(int4) a, cast(int4) b); 77 } 78 else 79 { 80 assert(0); 81 } 82 } 83 unittest 84 { 85 } 86 +/ 87 88 /+ 89 /// Perform four rounds of SHA1 operation using an initial SHA1 state (A,B,C,D) from a and some pre-computed sum of the next 4 round message values (unsigned 32-bit integers), and state variable E from b, and store the updated SHA1 state (A,B,C,D) in dst. func contains the logic functions and round constants. 90 __m128i _mm_sha1rnds4_epu32(__m128i a, __m128i b, const int func) @trusted 91 { 92 static if (SHA_builtins) 93 { 94 return __builtin_ia32_sha1rnds4(cast(int4) a, cast(int4) b, func); 95 } 96 else 97 { 98 assert(0); 99 } 100 101 } 102 +/ 103 104 /// Perform the final calculation for the next four SHA256 message values (unsigned 32-bit integers) using previous message values from `a` and `b`, and return the result. 105 __m128i _mm_sha256msg1_epu32(__m128i a, __m128i b) @trusted 106 { 107 static if (SHA_builtins) 108 { 109 return __builtin_ia32_sha256msg1(cast(int4) a, cast(int4) b); 110 } 111 else 112 { 113 static uint sigma0(uint x) nothrow @nogc @safe 114 { 115 return bitwiseRotateRight_uint(x, 7) ^ bitwiseRotateRight_uint(x, 18) ^ x >> 3; 116 } 117 118 int4 dst; 119 int4 a4 = cast(int4) a; 120 int4 b4 = cast(int4) b; 121 uint W4 = b4.array[0]; 122 uint W3 = a4.array[3]; 123 uint W2 = a4.array[2]; 124 uint W1 = a4.array[1]; 125 uint W0 = a4.array[0]; 126 dst.ptr[3] = W3 + sigma0(W4); 127 dst.ptr[2] = W2 + sigma0(W3); 128 dst.ptr[1] = W1 + sigma0(W2); 129 dst.ptr[0] = W0 + sigma0(W1); 130 return cast(__m128i) dst; 131 } 132 } 133 unittest 134 { 135 __m128i a = [15, 20, 130, 12345]; 136 __m128i b = [15, 20, 130, 12345]; 137 __m128i result = _mm_sha256msg1_epu32(a, b); 138 assert(result.array == [671416337, 69238821, 2114864873, 503574586]); 139 } 140 141 /// Perform 2 rounds of SHA256 operation using an initial SHA256 state (C,D,G,H) from `a`, an initial SHA256 state (A,B,E,F) from `b`, and a pre-computed sum of the next 2 round message values (unsigned 32-bit integers) and the corresponding round constants from k, and return the updated SHA256 state (A,B,E,F). 142 __m128i _mm_sha256msg2_epu32(__m128i a, __m128i b) @trusted 143 { 144 static if (SHA_builtins) 145 { 146 return __builtin_ia32_sha256msg2(cast(int4) a, cast(int4) b); 147 } 148 else 149 { 150 static uint sigma1(uint x) nothrow @nogc @safe 151 { 152 return bitwiseRotateRight_uint(x, 17) ^ bitwiseRotateRight_uint(x, 19) ^ x >> 10; 153 } 154 155 int4 dst; 156 int4 a4 = cast(int4) a; 157 int4 b4 = cast(int4) b; 158 uint W14 = b4.array[2]; 159 uint W15 = b4.array[3]; 160 uint W16 = a4.array[0] + sigma1(W14); 161 uint W17 = a4.array[1] + sigma1(W15); 162 uint W18 = a4.array[2] + sigma1(W16); 163 uint W19 = a4.array[3] + sigma1(W17); 164 dst.ptr[3] = W19; 165 dst.ptr[2] = W18; 166 dst.ptr[1] = W17; 167 dst.ptr[0] = W16; 168 return cast(__m128i) dst; 169 } 170 } 171 unittest 172 { 173 __m128i a = [15, 20, 130, 12345]; 174 __m128i b = [15, 20, 130, 12345]; 175 __m128i result = _mm_sha256msg2_epu32(a, b); 176 assert(result.array == [5324815, 505126944, -2012842764, -1542210977]); 177 } 178 179 /// Perform an intermediate calculation for the next four SHA256 message values (unsigned 32-bit integers) using previous message values from `a` and `b`, and return the result. 180 __m128i _mm_sha256rnds2_epu32(__m128i a, __m128i b, __m128i k) @trusted 181 { 182 static if (SHA_builtins) 183 { 184 return __builtin_ia32_sha256rnds2(cast(int4) a, cast(int4) b, cast(int4) k); 185 } 186 else 187 { 188 static uint Ch(uint x, uint y, uint z) nothrow @nogc @safe 189 { 190 return z ^ (x & (y ^ z)); 191 } 192 193 static uint Maj(uint x, uint y, uint z) nothrow @nogc @safe 194 { 195 return (x & y) | (z & (x ^ y)); 196 } 197 198 static uint sum0(uint x) nothrow @nogc @safe 199 { 200 return bitwiseRotateRight_uint(x, 2) ^ bitwiseRotateRight_uint(x, 13) ^ bitwiseRotateRight_uint(x, 22); 201 } 202 203 static uint sum1(uint x) nothrow @nogc @safe 204 { 205 return bitwiseRotateRight_uint(x, 6) ^ bitwiseRotateRight_uint(x, 11) ^ bitwiseRotateRight_uint(x, 25); 206 } 207 208 int4 dst; 209 int4 a4 = cast(int4) a; 210 int4 b4 = cast(int4) b; 211 int4 k4 = cast(int4) k; 212 213 const A0 = b4.array[3]; 214 const B0 = b4.array[2]; 215 const C0 = a4.array[3]; 216 const D0 = a4.array[2]; 217 const E0 = b4.array[1]; 218 const F0 = b4.array[0]; 219 const G0 = a4.array[1]; 220 const H0 = a4.array[0]; 221 const W_K0 = k4.array[0]; 222 const W_K1 = k4.array[1]; 223 const A1 = Ch(E0, F0, G0) + sum1(E0) + W_K0 + H0 + Maj(A0, B0, C0) + sum0(A0); 224 const B1 = A0; 225 const C1 = B0; 226 const D1 = C0; 227 const E1 = Ch(E0, F0, G0) + sum1(E0) + W_K0 + H0 + D0; 228 const F1 = E0; 229 const G1 = F0; 230 const H1 = G0; 231 const A2 = Ch(E1, F1, G1) + sum1(E1) + W_K1 + H1 + Maj(A1, B1, C1) + sum0(A1); 232 const B2 = A1; 233 const C2 = B1; 234 const D2 = C1; 235 const E2 = Ch(E1, F1, G1) + sum1(E1) + W_K1 + H1 + D1; 236 const F2 = E1; 237 const G2 = F1; 238 const H2 = G1; 239 240 dst.ptr[3] = A2; 241 dst.ptr[2] = B2; 242 dst.ptr[1] = E2; 243 dst.ptr[0] = F2; 244 245 return cast(__m128i) dst; 246 } 247 } 248 unittest 249 { 250 __m128i a = [15, 20, 130, 12345]; 251 __m128i b = [15, 20, 130, 12345]; 252 __m128i k = [15, 20, 130, 12345]; 253 __m128i result = _mm_sha256rnds2_epu32(a, b, k); 254 assert(result.array == [1384123044, -2050674062, 327754346, 956342016]); 255 } 256 257 private uint bitwiseRotateRight_uint(const uint value, const uint count) @safe 258 { 259 assert(count < 8 * uint.sizeof); 260 return cast(uint) ((value >> count) | (value << (uint.sizeof * 8 - count))); 261 }