1 /**
2 * Copyright: Copyright Auburn Sounds 2019.
3 * License:   $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
4 * Authors:   Guillaume Piolat
5 * Macros:
6 *      GUIDE = https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=$0
7 *
8 */
9 module inteli.mmx;
10 
11 public import inteli.types;
12 import inteli.internals;
13 
14 import inteli.xmmintrin;
15 import inteli.emmintrin;
16 
17 nothrow @nogc:
18 
19 // Important: you don't need to call _mm_empty when using "MMX" capabilities of intel-intrinsics,
20 // since it just generates the right IR and cleaning-up FPU registers is up to the codegen.
21 // intel-intrinsics is just semantics.
22 
23 
24 /// Add packed 16-bit integers in `a` and `b`.
25 __m64 _mm_add_pi16 (__m64 a, __m64 b)
26 {
27     return cast(__m64)(cast(short4)a + cast(short4)b);
28 }
29 unittest
30 {
31     short4 R = cast(short4) _mm_add_pi16(_mm_set1_pi16(4), _mm_set1_pi16(3));
32     short[4] correct = [7, 7, 7, 7];
33     assert(R.array == correct);
34 }
35 
36 /// Add packed 32-bit integers in `a` and `b`.
37 __m64 _mm_add_pi32 (__m64 a, __m64 b)
38 {
39     return cast(__m64)(cast(int2)a + cast(int2)b);
40 }
41 unittest
42 {
43     int2 R = cast(int2) _mm_add_pi32(_mm_set1_pi32(4), _mm_set1_pi32(3));
44     int[2] correct = [7, 7];
45     assert(R.array == correct);
46 }
47 
48 /// Add packed 8-bit integers in `a` and `b`.
49 __m64 _mm_add_pi8 (__m64 a, __m64 b)
50 {
51     return cast(__m64)(cast(byte8)a + cast(byte8)b);
52 }
53 unittest
54 {
55     byte8 R = cast(byte8) _mm_add_pi8(_mm_set1_pi8(127), _mm_set1_pi8(-128));
56     byte[8] correct = [-1, -1, -1, -1, -1, -1, -1, -1];
57     assert(R.array == correct);
58 }
59 
60 /// Add packed 16-bit integers in `a` and `b` using signed saturation.
61 // PERF: PADDSW not generated
62 __m64 _mm_adds_pi16(__m64 a, __m64 b) pure @trusted
63 {
64     return to_m64(_mm_adds_epi16(to_m128i(a), to_m128i(b)));
65 }
66 unittest
67 {
68     short4 res = cast(short4) _mm_adds_pi16(_mm_set_pi16(3, 2, 1, 0),
69                                             _mm_set_pi16(3, 2, 1, 0));
70     static immutable short[4] correctResult = [0, 2, 4, 6];
71     assert(res.array == correctResult);
72 }
73 
74 /// Add packed 8-bit integers in `a` and `b` using signed saturation.
75 // PERF: PADDSB not generated
76 __m64 _mm_adds_pi8(__m64 a, __m64 b) pure @trusted
77 {
78     return to_m64(_mm_adds_epi8(to_m128i(a), to_m128i(b)));
79 }
80 unittest
81 {
82     byte8 res = cast(byte8) _mm_adds_pi8(_mm_set_pi8(7, 6, 5, 4, 3, 2, 1, 0),
83                                          _mm_set_pi8(7, 6, 5, 4, 3, 2, 1, 0));
84     static immutable byte[8] correctResult = [0, 2, 4, 6, 8, 10, 12, 14];
85     assert(res.array == correctResult);
86 }
87 
88 /// Add packed 16-bit integers in `a` and `b` using unsigned saturation.
89 // PERF: PADDUSW not generated
90 __m64 _mm_adds_pu16(__m64 a, __m64 b) pure @trusted
91 {
92     return to_m64(_mm_adds_epu16(to_m128i(a), to_m128i(b)));
93 }
94 unittest
95 {
96     short4 res = cast(short4) _mm_adds_pu16(_mm_set_pi16(3, 2, cast(short)65535, 0),
97                                             _mm_set_pi16(3, 2, 1, 0));
98     static immutable short[4] correctResult = [0, cast(short)65535, 4, 6];
99     assert(res.array == correctResult);
100 }
101 
102 /// Add packed 8-bit integers in `a` and `b` using unsigned saturation.
103 // PERF: PADDUSB not generated
104 __m64 _mm_adds_pu8(__m64 a, __m64 b) pure @trusted
105 {
106     return to_m64(_mm_adds_epu8(to_m128i(a), to_m128i(b)));
107 }
108 unittest
109 {
110     byte8 res = cast(byte8) _mm_adds_pu8(_mm_set_pi8(7, 6, 5, 4, 3, 2, cast(byte)255, 0),
111                                          _mm_set_pi8(7, 6, 5, 4, 3, 2, 1, 0));
112     static immutable byte[8] correctResult = [0, cast(byte)255, 4, 6, 8, 10, 12, 14];
113     assert(res.array == correctResult);
114 }
115 
116 /// Compute the bitwise AND of 64 bits (representing integer data) in `a` and `b`.
117 __m64 _mm_and_si64 (__m64 a, __m64 b) pure @safe
118 {
119     return a & b;
120 }
121 unittest
122 {
123     __m64 A = [7];
124     __m64 B = [14];
125     __m64 R = _mm_and_si64(A, B);
126     assert(R.array[0] == 6);
127 }
128 
129 /// Compute the bitwise NOT of 64 bits (representing integer data) in `a` and then AND with `b`.
130 __m64 _mm_andnot_si64 (__m64 a, __m64 b)
131 {
132     return (~a) & b;
133 }
134 unittest
135 {
136     __m64 A = [7];
137     __m64 B = [14];
138     __m64 R = _mm_andnot_si64(A, B);
139     assert(R.array[0] == 8);
140 }
141 
142 /// Compare packed 16-bit integers in `a` and `b` for equality.
143 __m64 _mm_cmpeq_pi16 (__m64 a, __m64 b) pure @safe
144 {
145     static if (GDC_with_MMX)
146     {
147         return cast(__m64) __builtin_ia32_pcmpeqw(cast(short4)a, cast(short4)b);        
148     }
149     else
150     {
151         return cast(__m64) equalMask!short4(cast(short4)a, cast(short4)b);
152     }
153 }
154 unittest
155 {
156     short4   A = [-3, -2, -1,  0];
157     short4   B = [ 4,  3,  2,  1];
158     short[4] E = [ 0,  0,  0,  0];
159     short4   R = cast(short4)(_mm_cmpeq_pi16(cast(__m64)A, cast(__m64)B));
160     assert(R.array == E);
161 }
162 
163 /// Compare packed 32-bit integers in `a` and `b` for equality.
164 __m64 _mm_cmpeq_pi32 (__m64 a, __m64 b) pure @safe
165 {
166     static if (GDC_with_MMX)
167     {        
168         return cast(__m64) __builtin_ia32_pcmpeqd(cast(int2)a, cast(int2)b);
169     }
170     else
171     {
172         return cast(__m64) equalMask!int2(cast(int2)a, cast(int2)b);
173     }
174 }
175 unittest
176 {
177     int2   A = [-3, -2];
178     int2   B = [ 4, -2];
179     int[2] E = [ 0, -1];
180     int2   R = cast(int2)(_mm_cmpeq_pi32(cast(__m64)A, cast(__m64)B));
181     assert(R.array == E);
182 }
183 
184 /// Compare packed 8-bit integers in `a` and `b` for equality,
185 __m64 _mm_cmpeq_pi8 (__m64 a, __m64 b) pure @safe
186 {
187     static if (GDC_with_MMX)
188     {        
189         return cast(__m64) __builtin_ia32_pcmpeqb(cast(byte8)a, cast(byte8)b);
190     }
191     else
192     {
193         return cast(__m64) equalMask!byte8(cast(byte8)a, cast(byte8)b);
194     }
195 }
196 unittest
197 {
198     __m64 A = _mm_setr_pi8(1, 2, 3, 1, 2, 1, 1, 2);
199     __m64 B = _mm_setr_pi8(2, 2, 1, 2, 3, 1, 2, 3);
200     byte8 C = cast(byte8) _mm_cmpeq_pi8(A, B);
201     byte[8] correct =     [0,-1, 0, 0, 0,-1, 0, 0];
202     assert(C.array == correct);
203 }
204 
205 /// Compare packed 16-bit integers in `a` and `b` for greater-than.
206 __m64 _mm_cmpgt_pi16 (__m64 a, __m64 b) pure @safe
207 {
208     static if (GDC_with_MMX)
209     { 
210         return cast(__m64) __builtin_ia32_pcmpgtw (cast(short4)a, cast(short4)b);
211     }
212     else
213     {
214         return cast(__m64) greaterMask!short4(cast(short4)a, cast(short4)b);
215     }
216 }
217 unittest
218 {
219     short4   A = [-3, -2, -1,  0];
220     short4   B = [ 4,  3,  2,  1];
221     short[4] E = [ 0,  0,  0,  0];
222     short4   R = cast(short4)(_mm_cmpgt_pi16(cast(__m64)A, cast(__m64)B));
223     assert(R.array == E);
224 }
225 
226 /// Compare packed 32-bit integers in `a` and `b` for greater-than.
227 __m64 _mm_cmpgt_pi32 (__m64 a, __m64 b) pure @safe
228 {
229     static if (GDC_with_MMX)
230     {
231         return cast(__m64) __builtin_ia32_pcmpgtw (cast(short4)a, cast(short4)b);
232     }
233     else
234     {
235         return cast(__m64) greaterMask!int2(cast(int2)a, cast(int2)b);
236     }
237 }
238 unittest
239 {
240     int2   A = [-3,  2];
241     int2   B = [ 4, -2];
242     int[2] E = [ 0, -1];
243     int2   R = cast(int2)(_mm_cmpgt_pi32(cast(__m64)A, cast(__m64)B));
244     assert(R.array == E);
245 }
246 
247 /// Compare packed 8-bit integers in `a` and `b` for greater-than.
248 __m64 _mm_cmpgt_pi8 (__m64 a, __m64 b) pure @safe
249 {
250     static if (GDC_with_MMX)
251     {
252         return cast(__m64) __builtin_ia32_pcmpgtb (cast(byte8)a, cast(byte8)b);
253     }
254     else
255     {
256         return cast(__m64) greaterMask!byte8(cast(byte8)a, cast(byte8)b);
257     }
258 }
259 unittest
260 {
261     __m64 A = _mm_setr_pi8(1, 2, 3, 1, 2, 1, 1, 2);
262     __m64 B = _mm_setr_pi8(2, 2, 1, 2, 3, 1, 2, 3);
263     byte8 C = cast(byte8) _mm_cmpgt_pi8(A, B);
264     byte[8] correct =     [0, 0,-1, 0, 0, 0, 0, 0];
265     assert(C.array == correct);
266 }
267 
268 /// Copy 64-bit integer `a` to `dst`.
269 long _mm_cvtm64_si64 (__m64 a) pure @safe
270 {
271     long1 la = cast(long1)a;
272     return a.array[0];
273 }
274 unittest
275 {
276     __m64 A = _mm_setr_pi32(2, 1);
277     long1 lA = cast(long1)A;
278     assert(A.array[0] == 0x100000002);
279 }
280 
281 /// Copy 32-bit integer `a` to the lower elements of `dst`, and zero the upper element of `dst`.
282 __m64 _mm_cvtsi32_si64 (int a) pure @trusted
283 {
284     __m64 r = void;
285     r.ptr[0] = a;
286     return r;
287 }
288 unittest
289 {
290     __m64 R = _mm_cvtsi32_si64(-1);
291     assert(R.array[0] == -1);
292 }
293 
294 /// Copy 64-bit integer `a` to `dst`.
295 __m64 _mm_cvtsi64_m64 (long a) pure @trusted
296 {
297     __m64 r = void;
298     r.ptr[0] = a;
299     return r;
300 }
301 unittest
302 {
303     __m64 R = _mm_cvtsi64_m64(0x123456789A);
304     assert(R.array[0] == 0x123456789A);
305 }
306 
307 /// Get the lower 32-bit integer in `a`.
308 int _mm_cvtsi64_si32 (__m64 a) pure @safe
309 {
310     int2 r = cast(int2)a;
311     return r.array[0];
312 }
313 unittest
314 {
315     __m64 A = _mm_setr_pi32(-6, 5);
316     int R = _mm_cvtsi64_si32(A);
317     assert(R == -6);
318 }
319 
320 /// Empty the MMX state, which marks the x87 FPU registers as available for 
321 /// use by x87 instructions. 
322 /// This instruction is supposed to be used at the end of all MMX technology procedures.
323 /// This is useless when using `intel-intrinsics`, at least with LDC and DMD.
324 void _mm_empty() pure @safe
325 {
326     // do nothing, see comment on top of file
327     // TODO: not sure for GDC, do something?
328 }
329 
330 ///ditto
331 alias _m_empty = _mm_empty;
332 
333 alias _m_from_int =  _mm_cvtsi32_si64;
334 alias _m_from_int64 = _mm_cvtsi64_m64;
335 
336 /// Multiply packed 16-bit integers in `a` and `b`, producing intermediate 32-bit integers. 
337 /// Horizontally add adjacent pairs of intermediate 32-bit integers
338 __m64 _mm_madd_pi16 (__m64 a, __m64 b) pure @safe
339 {
340     return to_m64(_mm_madd_epi16(to_m128i(a), to_m128i(b)));
341 }
342 unittest
343 {
344     short4 A = [-32768, -32768, 32767, 32767];
345     short4 B = [-32768, -32768, 32767, 32767];
346     int2 R = cast(int2) _mm_madd_pi16(cast(__m64)A, cast(__m64)B);
347     int[2] correct = [-2147483648, 2*32767*32767];
348     assert(R.array == correct);
349 }
350 
351 /// Multiply the packed 16-bit integers in `a` and `b`, producing intermediate 32-bit integers, 
352 /// and store the high 16 bits of the intermediate integers.
353 __m64 _mm_mulhi_pi16 (__m64 a, __m64 b) pure @safe
354 {
355     return to_m64(_mm_mulhi_epi16(to_m128i(a), to_m128i(b)));
356 }
357 unittest
358 {
359     __m64 A = _mm_setr_pi16(4, 8, -16, 7);
360     __m64 B = _mm_set1_pi16(16384);
361     short4 R = cast(short4)_mm_mulhi_pi16(A, B);
362     short[4] correct = [1, 2, -4, 1];
363     assert(R.array == correct);
364 }
365 
366 /// Multiply the packed 16-bit integers in `a` and `b`, producing intermediate 32-bit integers, 
367 /// and store the low 16 bits of the intermediate integers.
368 __m64 _mm_mullo_pi16 (__m64 a, __m64 b) pure @safe
369 {
370     return to_m64(_mm_mullo_epi16(to_m128i(a), to_m128i(b)));
371 }
372 unittest
373 {
374     __m64 A = _mm_setr_pi16(4, 1, 16, 7);
375     __m64 B = _mm_set1_pi16(16384);
376     short4 R = cast(short4)_mm_mullo_pi16(A, B);
377     short[4] correct = [0, 16384, 0, -16384];
378     assert(R.array == correct);
379 }
380 
381 /// Compute the bitwise OR of 64 bits in `a` and `b`.
382 __m64 _mm_or_si64 (__m64 a, __m64 b) pure @safe
383 {
384     return a | b;
385 }
386 unittest
387 {
388     __m64 A = _mm_setr_pi16(255, 1, -1, 0);
389     __m64 B = _mm_set1_pi16(15);
390     short4 R = cast(short4)_mm_or_si64(A, B);
391     short[4] correct =     [255, 15, -1, 15];
392     assert(R.array == correct);
393 }
394 
395 /// Convert packed 16-bit integers from `a` and `b` to packed 8-bit integers using signed saturation.
396 __m64 _mm_packs_pi16 (__m64 a, __m64 b) pure @trusted
397 {
398     int4 p = cast(int4) _mm_packs_epi16(to_m128i(a), to_m128i(b));
399     int2 r;
400     r.ptr[0] = p.array[0];
401     r.ptr[1] = p.array[2];
402     return cast(__m64)r;
403 }
404 unittest
405 {
406     __m64 A = _mm_setr_pi16(256, -129, 254, 0);
407     byte8 R = cast(byte8) _mm_packs_pi16(A, A);
408     byte[8] correct = [127, -128, 127, 0, 127, -128, 127, 0];
409     assert(R.array == correct);
410 }
411 
412 /// Convert packed 32-bit integers from `a` and `b` to packed 16-bit integers using signed saturation.
413 __m64 _mm_packs_pi32 (__m64 a, __m64 b) pure @trusted
414 {
415     int4 p = cast(int4) _mm_packs_epi32(to_m128i(a), to_m128i(b));
416     int2 r;
417     r.ptr[0] = p.array[0];
418     r.ptr[1] = p.array[2];
419     return cast(__m64)r;
420 }
421 unittest
422 {
423     __m64 A = _mm_setr_pi32(100000, -100000);
424     short4 R = cast(short4) _mm_packs_pi32(A, A);
425     short[4] correct = [32767, -32768, 32767, -32768];
426     assert(R.array == correct);
427 }
428 
429 /// Convert packed 16-bit integers from `a` and `b` to packed 8-bit integers using unsigned saturation.
430 __m64 _mm_packs_pu16 (__m64 a, __m64 b) pure @trusted
431 {
432     int4 p = cast(int4) _mm_packus_epi16(to_m128i(a), to_m128i(b));
433     int2 r;
434     r.ptr[0] = p.array[0];
435     r.ptr[1] = p.array[2];
436     return cast(__m64)r;
437 }
438 unittest
439 {
440     __m64 A = _mm_setr_pi16(256, -129, 254, 0);
441     byte8 R = cast(byte8) _mm_packs_pu16(A, A);
442     ubyte[8] correct = [255, 0, 254, 0, 255, 0, 254, 0];
443     assert(R.array == cast(byte[8])correct);
444 }
445 
446 deprecated alias
447     _m_packssdw = _mm_packs_pi32,
448     _m_packsswb = _mm_packs_pi16,
449     _m_packuswb = _mm_packs_pu16,
450     _m_paddb = _mm_add_pi8,
451     _m_paddd = _mm_add_pi32,
452     _m_paddsb = _mm_adds_pi8,
453     _m_paddsw = _mm_adds_pi16,
454     _m_paddusb = _mm_adds_pu8,
455     _m_paddusw = _mm_adds_pu16,
456     _m_paddw = _mm_add_pi16,
457     _m_pand = _mm_and_si64,
458     _m_pandn = _mm_andnot_si64,
459     _m_pcmpeqb = _mm_cmpeq_pi8,
460     _m_pcmpeqd = _mm_cmpeq_pi32,
461     _m_pcmpeqw = _mm_cmpeq_pi16,
462     _m_pcmpgtb = _mm_cmpgt_pi8,
463     _m_pcmpgtd = _mm_cmpgt_pi32,
464     _m_pcmpgtw = _mm_cmpgt_pi16,
465     _m_pmaddwd = _mm_madd_pi16,
466     _m_pmulhw = _mm_mulhi_pi16,
467     _m_pmullw = _mm_mullo_pi16,
468     _m_por = _mm_or_si64,
469     _m_pslld = _mm_sll_pi32,
470     _m_pslldi = _mm_slli_pi32,
471     _m_psllq = _mm_sll_si64,
472     _m_psllqi = _mm_slli_si64,
473     _m_psllw = _mm_sll_pi16,
474     _m_psllwi = _mm_slli_pi16,
475     _m_psrad = _mm_sra_pi32,
476     _m_psradi = _mm_srai_pi32,
477     _m_psraw = _mm_sra_pi16,
478     _m_psrawi = _mm_srai_pi16,
479     _m_psrld = _mm_srl_pi32,
480     _m_psrldi = _mm_srli_pi32,
481     _m_psrlq = _mm_srl_si64,
482     _m_psrlqi = _mm_srli_si64,
483     _m_psrlw = _mm_srl_pi16,
484     _m_psrlwi = _mm_srli_pi16,
485     _m_psubb = _mm_sub_pi8,
486     _m_psubd = _mm_sub_pi32,
487     _m_psubsb = _mm_subs_pi8,
488     _m_psubsw = _mm_subs_pi16,
489     _m_psubusb = _mm_subs_pu8,
490     _m_psubusw = _mm_subs_pu16,
491     _m_psubw = _mm_sub_pi16,
492     _m_punpckhbw = _mm_unpackhi_pi8,
493     _m_punpckhdq = _mm_unpackhi_pi32,
494     _m_punpckhwd = _mm_unpackhi_pi16,
495     _m_punpcklbw = _mm_unpacklo_pi8,
496     _m_punpckldq = _mm_unpacklo_pi32,
497     _m_punpcklwd = _mm_unpacklo_pi16,
498     _m_pxor = _mm_xor_si64;
499 
500 /// Set packed 16-bit integers with the supplied values.
501 __m64 _mm_set_pi16 (short e3, short e2, short e1, short e0) pure @trusted
502 {
503     short[4] arr = [e0, e1, e2, e3];
504     return *cast(__m64*)(arr.ptr);
505 }
506 unittest
507 {
508     short4 R = cast(short4) _mm_set_pi16(3, 2, 1, 0);
509     short[4] correct = [0, 1, 2, 3];
510     assert(R.array == correct);
511 }
512 
513 /// Set packed 32-bit integers with the supplied values.
514 __m64 _mm_set_pi32 (int e1, int e0) pure @trusted
515 {
516     int[2] arr = [e0, e1];
517     return *cast(__m64*)(arr.ptr);
518 }
519 unittest
520 {
521     int2 R = cast(int2) _mm_set_pi32(1, 0);
522     int[2] correct = [0, 1];
523     assert(R.array == correct);
524 }
525 
526 /// Set packed 8-bit integers with the supplied values.
527 __m64 _mm_set_pi8 (byte e7, byte e6, byte e5, byte e4, byte e3, byte e2, byte e1, byte e0) pure @trusted
528 {
529     byte[8] arr = [e0, e1, e2, e3, e4, e5, e6, e7];
530     return *cast(__m64*)(arr.ptr);
531 }
532 unittest
533 {
534     byte8 R = cast(byte8) _mm_set_pi8(7, 6, 5, 4, 3, 2, 1, 0);
535     byte[8] correct = [0, 1, 2, 3, 4, 5, 6, 7];
536     assert(R.array == correct);
537 }
538 
539 /// Broadcast 16-bit integer `a` to all elements.
540 __m64 _mm_set1_pi16 (short a) pure @trusted
541 {
542     return cast(__m64)(short4(a));
543 }
544 unittest
545 {
546     short4 R = cast(short4) _mm_set1_pi16(44);
547     short[4] correct = [44, 44, 44, 44];
548     assert(R.array == correct);
549 }
550 
551 /// Broadcast 32-bit integer `a` to all elements.
552 __m64 _mm_set1_pi32 (int a) pure @trusted
553 {
554     return cast(__m64)(int2(a));
555 }
556 unittest
557 {
558     int2 R = cast(int2) _mm_set1_pi32(43);
559     int[2] correct = [43, 43];
560     assert(R.array == correct);
561 }
562 
563 /// Broadcast 8-bit integer `a` to all elements.
564 __m64 _mm_set1_pi8 (byte a) pure @trusted
565 {
566     return cast(__m64)(byte8(a));
567 }
568 unittest
569 {
570     byte8 R = cast(byte8) _mm_set1_pi8(42);
571     byte[8] correct = [42, 42, 42, 42, 42, 42, 42, 42];
572     assert(R.array == correct);
573 }
574 
575 /// Set packed 16-bit integers with the supplied values in reverse order.
576 __m64 _mm_setr_pi16 (short e3, short e2, short e1, short e0) pure @trusted
577 {
578     short[4] arr = [e3, e2, e1, e0];
579     return *cast(__m64*)(arr.ptr);
580 }
581 unittest
582 {
583     short4 R = cast(short4) _mm_setr_pi16(0, 1, 2, 3);
584     short[4] correct = [0, 1, 2, 3];
585     assert(R.array == correct);
586 }
587 
588 /// Set packed 32-bit integers with the supplied values in reverse order.
589 __m64 _mm_setr_pi32 (int e1, int e0) pure @trusted
590 {
591     int[2] arr = [e1, e0];
592     return *cast(__m64*)(arr.ptr);
593 }
594 unittest
595 {
596     int2 R = cast(int2) _mm_setr_pi32(0, 1);
597     int[2] correct = [0, 1];
598     assert(R.array == correct);
599 }
600 
601 /// Set packed 8-bit integers with the supplied values in reverse order.
602 __m64 _mm_setr_pi8 (byte e7, byte e6, byte e5, byte e4, byte e3, byte e2, byte e1, byte e0) pure @trusted
603 {
604     byte[8] arr = [e7, e6, e5, e4, e3, e2, e1, e0];
605     return *cast(__m64*)(arr.ptr);
606 }
607 unittest
608 {
609     byte8 R = cast(byte8) _mm_setr_pi8(0, 1, 2, 3, 4, 5, 6, 7);
610     byte[8] correct = [0, 1, 2, 3, 4, 5, 6, 7];
611     assert(R.array == correct);
612 }
613 
614 /// Return vector of type `__m64` with all elements set to zero.
615 __m64 _mm_setzero_si64 () pure @trusted
616 {
617     __m64 r;
618     r.ptr[0] = 0;
619     return r;
620 }
621 unittest
622 {
623     __m64 R = _mm_setzero_si64();
624     assert(R.array[0] == 0);
625 }
626 
627 /// Shift packed 16-bit integers in `a` left by `bits` while shifting in zeros.
628 deprecated("Use _mm_slli_pi16 instead.") __m64 _mm_sll_pi16 (__m64 a, __m64 bits) pure @safe
629 {
630     return to_m64(_mm_sll_epi16(to_m128i(a), to_m128i(bits)));
631 }
632 
633 /// Shift packed 32-bit integers in `a` left by `bits` while shifting in zeros.
634 deprecated("Use _mm_slli_pi32 instead.") __m64 _mm_sll_pi32 (__m64 a, __m64 bits) pure @safe
635 {
636     return to_m64(_mm_sll_epi32(to_m128i(a), to_m128i(bits)));
637 }
638 
639 /// Shift 64-bit integer `a` left by `bits` while shifting in zeros.
640 deprecated("Use _mm_slli_si64 instead.") __m64 _mm_sll_si64 (__m64 a, __m64 bits) pure @safe
641 {
642     return to_m64(_mm_sll_epi64(to_m128i(a), to_m128i(bits)));
643 }
644 
645 /// Shift packed 16-bit integers in `a` left by `bits` while shifting in zeros.
646 __m64 _mm_slli_pi16 (__m64 a, int bits) pure @safe
647 {
648     return to_m64(_mm_slli_epi16(to_m128i(a), bits));
649 }
650 unittest
651 {
652     __m64 A = _mm_setr_pi16(-4, -5, 6, 7);
653     short4 B = cast(short4)( _mm_slli_pi16(A, 1) );
654     short[4] correct = [ -8, -10, 12, 14 ];
655     assert(B.array == correct);
656 }
657 
658 /// Shift packed 32-bit integers in `a` left by `bits` while shifting in zeros.
659 __m64 _mm_slli_pi32 (__m64 a, int bits) pure @safe
660 {
661     return to_m64(_mm_slli_epi32(to_m128i(a), bits));
662 }
663 unittest
664 {
665     __m64 A = _mm_setr_pi32(-4, 5);
666     int2 B = cast(int2)( _mm_slli_pi32(A, 1) );
667     int[2] correct = [ -8, 10 ];
668     assert(B.array == correct);
669 }
670 
671 /// Shift 64-bit integer `a` left by `bits` while shifting in zeros.
672 __m64 _mm_slli_si64 (__m64 a, int bits) pure @safe
673 {
674     return to_m64(_mm_slli_epi64(to_m128i(a), bits));
675 }
676 unittest
677 {
678     __m64 A = _mm_cvtsi64_m64(-1);
679     long1 R = cast(long1)( _mm_slli_si64(A, 1) );
680     long[1] correct = [ -2 ];
681     assert(R.array == correct);
682 }
683 
684 /// Shift packed 16-bit integers in `a` right by `bits` while shifting in sign bits.
685 deprecated("Use _mm_srai_pi16 instead.") __m64 _mm_sra_pi16 (__m64 a, __m64 bits) pure @safe
686 {
687     return to_m64(_mm_sra_epi16(to_m128i(a), to_m128i(bits)));
688 }
689 
690 /// Shift packed 32-bit integers in `a` right by `bits` while shifting in sign bits.
691 deprecated("Use _mm_srai_pi32 instead.") __m64 _mm_sra_pi32 (__m64 a, __m64 bits) pure @safe
692 {
693     return to_m64(_mm_sra_epi32(to_m128i(a), to_m128i(bits)));
694 }
695 
696 /// Shift packed 16-bit integers in `a` right by `bits` while shifting in sign bits.
697 __m64 _mm_srai_pi16 (__m64 a, int bits) pure @safe
698 {
699     return to_m64(_mm_srai_epi16(to_m128i(a), bits));
700 }
701 unittest
702 {
703     __m64 A = _mm_setr_pi16(-4, -5, 6, 7);
704     short4 B = cast(short4)( _mm_srai_pi16(A, 1) );
705     short[4] correct = [ -2, -3, 3, 3 ];
706     assert(B.array == correct);
707 }
708 
709 /// Shift packed 32-bit integers in `a` right by `bits` while shifting in sign bits.
710 __m64 _mm_srai_pi32 (__m64 a, int bits) pure @safe
711 {
712     return to_m64(_mm_srai_epi32(to_m128i(a), bits));
713 }
714 unittest
715 {
716     __m64 A = _mm_setr_pi32(-4, 5);
717     int2 B = cast(int2)( _mm_srai_pi32(A, 1) );
718     int[2] correct = [ -2, 2 ];
719     assert(B.array == correct);
720 }
721 
722 /// Shift packed 16-bit integers in `a` right by `bits` while shifting in zeros.
723 deprecated("Use _mm_srli_pi16 instead.") __m64 _mm_srl_pi16 (__m64 a, __m64 bits) pure @safe
724 {
725     return to_m64(_mm_srl_epi16(to_m128i(a), to_m128i(bits)));
726 }
727 
728 /// Shift packed 32-bit integers in `a` right by `bits` while shifting in zeros.
729 deprecated("Use _mm_srli_pi32 instead.") __m64 _mm_srl_pi32 (__m64 a, __m64 bits) pure @safe
730 {
731     return to_m64(_mm_srl_epi32(to_m128i(a), to_m128i(bits)));
732 }
733 
734 /// Shift 64-bit integer `a` right by `bits` while shifting in zeros.
735 deprecated("Use _mm_srli_si64 instead.") __m64 _mm_srl_si64 (__m64 a, __m64 bits) pure @safe
736 {
737     return to_m64(_mm_srl_epi64(to_m128i(a), to_m128i(bits)));
738 }
739 
740 /// Shift packed 16-bit integers in `a` right by `bits` while shifting in zeros.
741 __m64 _mm_srli_pi16 (__m64 a, int bits) pure @safe
742 {
743     return to_m64(_mm_srli_epi16(to_m128i(a), bits));
744 }
745 unittest
746 {
747     __m64 A = _mm_setr_pi16(-4, -5, 6, 7);
748     short4 B = cast(short4)( _mm_srli_pi16(A, 1) );
749     short[4] correct = [ 0x7ffe, 0x7ffd, 3, 3 ];
750     assert(B.array == correct);
751 }
752 
753 /// Shift packed 32-bit integers in `a` right by `bits` while shifting in zeros.
754 __m64 _mm_srli_pi32 (__m64 a, int bits) pure @safe
755 {
756     return to_m64(_mm_srli_epi32(to_m128i(a), bits));
757 }
758 unittest
759 {
760     __m64 A = _mm_setr_pi32(-4, 5);
761     int2 B = cast(int2)( _mm_srli_pi32(A, 1) );
762     int[2] correct = [ 0x7ffffffe, 2 ];
763     assert(B.array == correct);
764 }
765 
766 /// Shift 64-bit integer `a` right by `bits` while shifting in zeros.
767 __m64 _mm_srli_si64 (__m64 a, int bits) pure @safe
768 {
769     return to_m64(_mm_srli_epi64(to_m128i(a), bits));
770 }
771 unittest
772 {
773     __m64 A = _mm_cvtsi64_m64(-1);
774     long1 R = cast(long1)( _mm_srli_si64(A, 1) );
775     long[1] correct = [ 0x7fff_ffff_ffff_ffff ];
776     assert(R.array == correct);
777 }
778 
779 /// Subtract packed 16-bit integers in `b` from packed 16-bit integers in `a`.
780 __m64 _mm_sub_pi16 (__m64 a, __m64 b) pure @safe
781 {
782     return cast(__m64)(cast(short4)a - cast(short4)b);
783 }
784 unittest
785 {
786     short4 R = cast(short4) _mm_sub_pi16(_mm_setr_pi16(cast(short)65534,  1, 5, -32768),
787                                          _mm_setr_pi16(cast(short)65535, 16, 4, 4));
788     static immutable short[4] correct =                            [ -1,-15, 1, 32764];
789     assert(R.array == correct);
790 }
791 
792 /// Subtract packed 32-bit integers in `b` from packed 32-bit integers in `a`.
793 __m64 _mm_sub_pi32 (__m64 a, __m64 b) pure @safe
794 {
795     return cast(__m64)(cast(int2)a - cast(int2)b);
796 }
797 unittest
798 {
799     int2 R = cast(int2) _mm_sub_pi32(_mm_setr_pi32( 10,   4),
800                                      _mm_setr_pi32( 15, -70));
801     static immutable int[2] correct =             [ -5,  74];
802     assert(R.array == correct);
803 }
804 
805 /// Subtract packed 8-bit integers in `b` from packed 8-bit integers in `a`.
806 __m64 _mm_sub_pi8 (__m64 a, __m64 b) pure @safe
807 {
808     return cast(__m64)(cast(byte8)a - cast(byte8)b);
809 }
810 unittest
811 {
812     byte8 R = cast(byte8) _mm_sub_pi8(_mm_setr_pi8(cast(byte)254, 127, 13, 12, 11, 10, 9, -128),
813                                       _mm_setr_pi8(cast(byte)255, 120, 14, 42, 11, 10, 9, 8));
814     static immutable byte[8] correct =                 [      -1,   7, -1,-30,  0,  0, 0, 120 ];
815     assert(R.array == correct);
816 }
817 
818 /// Subtract packed 16-bit integers in `b` from packed 16-bit integers in `a` using saturation.
819 __m64 _mm_subs_pi16 (__m64 a, __m64 b) pure @safe
820 {
821     return to_m64(_mm_subs_epi16(to_m128i(a), to_m128i(b)));
822 }
823 unittest
824 {
825     short4 R = cast(short4) _mm_subs_pi16(_mm_setr_pi16(cast(short)65534,  1, 5, -32768),
826                                           _mm_setr_pi16(cast(short)65535, 16, 4, 4));
827     static immutable short[4] correct =                             [ -1,-15, 1, -32768];
828     assert(R.array == correct);
829 }
830 
831 /// Subtract packed 8-bit integers in `b` from packed 8-bit integers in `a` using saturation.
832 __m64 _mm_subs_pi8 (__m64 a, __m64 b) pure @safe
833 {
834     return to_m64(_mm_subs_epi8(to_m128i(a), to_m128i(b)));
835 }
836 unittest
837 {
838     byte8 R = cast(byte8) _mm_subs_pi8(_mm_setr_pi8(cast(byte)254, 127, 13, 12, 11, 10, 9, -128),
839                                        _mm_setr_pi8(cast(byte)255, 120, 14, 42, 11, 10, 9, 8));
840     static immutable byte[8] correct =                 [       -1,   7, -1,-30,  0,  0, 0, -128 ];
841     assert(R.array == correct);
842 }
843 
844 /// Subtract packed unsigned 16-bit integers in `b` from packed unsigned 16-bit integers in `a` 
845 /// using saturation.
846 __m64 _mm_subs_pu16 (__m64 a, __m64 b) pure @safe
847 {
848     return to_m64(_mm_subs_epu16(to_m128i(a), to_m128i(b)));
849 }
850 unittest
851 {
852     short4 R = cast(short4) _mm_subs_pu16(_mm_setr_pi16(cast(short)65534,  1, 5, 4),
853                                           _mm_setr_pi16(cast(short)65535, 16, 4, 4));
854     static immutable short[4] correct =                              [ 0,  0, 1, 0];
855     assert(R.array == correct);
856 }
857 
858 /// Subtract packed unsigned 8-bit integers in `b` from packed unsigned 8-bit integers in `a` 
859 /// using saturation.
860 __m64 _mm_subs_pu8 (__m64 a, __m64 b) pure @safe
861 {
862     return to_m64(_mm_subs_epu8(to_m128i(a), to_m128i(b)));
863 }
864 unittest
865 {
866     byte8 R = cast(byte8) _mm_subs_pu8(_mm_setr_pi8(cast(byte)254, 127, 13, 12, 11, 10, 9, 8),
867                                        _mm_setr_pi8(cast(byte)255, 120, 14, 42, 11, 10, 9, 8));
868     static immutable byte[8] correct =                 [        0,   7,  0,  0,  0,  0, 0, 0, ];
869     assert(R.array == correct);
870 }
871 
872 deprecated alias _m_to_int = _mm_cvtsi64_si32;
873 deprecated alias _m_to_int64 = _mm_cvtm64_si64;
874 
875 /// Unpack and interleave 16-bit integers from the high half of `a` and `b`.
876 __m64 _mm_unpackhi_pi16 (__m64 a, __m64 b) pure @trusted
877 {   
878     version(LDC)
879     {
880         // avoiding this shufflevector leads to bad performance on LDC
881         return cast(__m64) shufflevector!(short4, 2, 6, 3, 7)(cast(short4)a, cast(short4)b);
882     }
883     else
884     {
885         short4 ia = cast(short4)a;
886         short4 ib = cast(short4)b;
887         short4 r;
888         r.ptr[0] = ia.array[2];
889         r.ptr[1] = ib.array[2];
890         r.ptr[2] = ia.array[3];
891         r.ptr[3] = ib.array[3];
892         return cast(__m64)r;
893     }
894 }
895 unittest
896 {
897     __m64 A = _mm_setr_pi16(4, 8, -16, 7);
898     __m64 B = _mm_setr_pi16(5, 9,  -3, 10);
899     short4 R = cast(short4) _mm_unpackhi_pi16(A, B);
900     short[4] correct = [-16, -3, 7, 10];
901     assert(R.array == correct);
902 }
903 
904 /// Unpack and interleave 32-bit integers from the high half of `a` and `b`.
905 __m64 _mm_unpackhi_pi32 (__m64 a, __m64 b) pure @trusted
906 {
907     // Generate punpckldq as far back as LDC 1.0.0 -O1
908     // (Yes, LLVM does generate punpckldq to reuse SSE2 instructions)
909     int2 ia = cast(int2)a;
910     int2 ib = cast(int2)b;
911     int2 r;
912     r.ptr[0] = ia.array[1];
913     r.ptr[1] = ib.array[1];
914     return cast(__m64)r;
915 }
916 unittest
917 {
918     __m64 A = _mm_setr_pi32(4, 8);
919     __m64 B = _mm_setr_pi32(5, 9);
920     int2 R = cast(int2) _mm_unpackhi_pi32(A, B);
921     int[2] correct = [8, 9];
922     assert(R.array == correct);
923 }
924 
925 /// Unpack and interleave 8-bit integers from the high half of `a` and `b`.
926 __m64 _mm_unpackhi_pi8 (__m64 a, __m64 b)
927 {
928     version(LDC)
929     {
930         return cast(__m64) shufflevector!(byte8, 4, 12, 5, 13, 6, 14, 7, 15)(cast(byte8)a, cast(byte8)b);
931     }
932     else
933     {
934         byte8 ia = cast(byte8)a;
935         byte8 ib = cast(byte8)b;
936         byte8 r;
937         r.ptr[0] = ia.array[4];
938         r.ptr[1] = ib.array[4];
939         r.ptr[2] = ia.array[5];
940         r.ptr[3] = ib.array[5];
941         r.ptr[4] = ia.array[6];
942         r.ptr[5] = ib.array[6];
943         r.ptr[6] = ia.array[7];
944         r.ptr[7] = ib.array[7];
945         return cast(__m64)r;
946     }
947 }
948 unittest
949 {
950     __m64 A = _mm_setr_pi8( 1,  2,  3,  4,  5,  6,  7,  8);
951     __m64 B = _mm_setr_pi8(-1, -2, -3, -4, -5, -6, -7, -8);
952     byte8 R = cast(byte8) _mm_unpackhi_pi8(A, B);
953     byte[8] correct = [5, -5, 6, -6, 7, -7, 8, -8];
954     assert(R.array == correct);
955 }
956 
957 /// Unpack and interleave 16-bit integers from the low half of `a` and `b`.
958 __m64 _mm_unpacklo_pi16 (__m64 a, __m64 b)
959 {
960     // Generates punpcklwd since LDC 1.0.0 -01
961     short4 ia = cast(short4)a;
962     short4 ib = cast(short4)b;
963     short4 r;
964     r.ptr[0] = ia.array[0];
965     r.ptr[1] = ib.array[0];
966     r.ptr[2] = ia.array[1];
967     r.ptr[3] = ib.array[1];
968     return cast(__m64)r;
969 }
970 unittest
971 {
972     __m64 A = _mm_setr_pi16(4, 8, -16, 7);
973     __m64 B = _mm_setr_pi16(5, 9,  -3, 10);
974     short4 R = cast(short4) _mm_unpacklo_pi16(A, B);
975     short[4] correct = [4, 5, 8, 9];
976     assert(R.array == correct);
977 }
978 
979 /// Unpack and interleave 32-bit integers from the low half of `a` and `b`.
980 __m64 _mm_unpacklo_pi32 (__m64 a, __m64 b) pure @trusted
981 {
982     // x86: Generate punpckldq as far back as LDC 1.0.0 -O1
983     // ARM: Generate zip as far back as LDC 1.8.0 -O1
984     int2 ia = cast(int2)a;
985     int2 ib = cast(int2)b;
986     int2 r;
987     r.ptr[0] = ia.array[0];
988     r.ptr[1] = ib.array[0];
989     return cast(__m64)r;
990 }
991 unittest
992 {
993     __m64 A = _mm_setr_pi32(4, 8);
994     __m64 B = _mm_setr_pi32(5, 9);
995     int2 R = cast(int2) _mm_unpacklo_pi32(A, B);
996     int[2] correct = [4, 5];
997     assert(R.array == correct);
998 }
999 
1000 /// Unpack and interleave 8-bit integers from the low half of `a` and `b`.
1001 __m64 _mm_unpacklo_pi8 (__m64 a, __m64 b)
1002 {
1003     version(LDC)
1004     {
1005         return cast(__m64) shufflevector!(byte8, 0, 8, 1, 9, 2, 10, 3, 11)(cast(byte8)a, cast(byte8)b);
1006     }
1007     else
1008     {
1009         byte8 ia = cast(byte8)a;
1010         byte8 ib = cast(byte8)b;
1011         byte8 r;
1012         r.ptr[0] = ia.array[0];
1013         r.ptr[1] = ib.array[0];
1014         r.ptr[2] = ia.array[1];
1015         r.ptr[3] = ib.array[1];
1016         r.ptr[4] = ia.array[2];
1017         r.ptr[5] = ib.array[2];
1018         r.ptr[6] = ia.array[3];
1019         r.ptr[7] = ib.array[3];
1020         return cast(__m64)r;
1021     }
1022 }
1023 unittest
1024 {
1025     __m64 A = _mm_setr_pi8( 1,  2,  3,  4,  5,  6,  7,  8);
1026     __m64 B = _mm_setr_pi8(-1, -2, -3, -4, -5, -6, -7, -8);
1027     byte8 R = cast(byte8) _mm_unpacklo_pi8(A, B);
1028     byte[8] correct = [1, -1, 2, -2, 3, -3, 4, -4];
1029     assert(R.array == correct);
1030 }
1031 
1032 /// Compute the bitwise XOR of 64 bits (representing integer data) in `a` and `b`.
1033 __m64 _mm_xor_si64 (__m64 a, __m64 b)
1034 {
1035     return a ^ b;
1036 }
1037 unittest
1038 {
1039     __m64 A = _mm_setr_pi16(255, 1, -1, 0);
1040     __m64 B = _mm_set1_pi16(15);
1041     short4 R = cast(short4)_mm_xor_si64(A, B);
1042     short[4] correct =     [240, 14, -16, 15];
1043     assert(R.array == correct);
1044 }
1045