1 /**
2 * Copyright: Copyright Auburn Sounds 2016-2019.
3 * License:   $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
4 * Authors:   Guillaume Piolat
5 */
6 module inteli.xmmintrin;
7 
8 public import inteli.types;
9 
10 import inteli.internals;
11 
12 import inteli.mmx;
13 import inteli.emmintrin;
14 
15 import core.stdc.stdlib: malloc, free;
16 import core.exception: onOutOfMemoryError;
17 
18 version(D_InlineAsm_X86)
19     version = InlineX86Asm;
20 else version(D_InlineAsm_X86_64)
21     version = InlineX86Asm;
22 
23 
24 // SSE1
25 
26 nothrow @nogc:
27 
28 
29 enum int _MM_EXCEPT_INVALID    = 0x0001;
30 enum int _MM_EXCEPT_DENORM     = 0x0002;
31 enum int _MM_EXCEPT_DIV_ZERO   = 0x0004;
32 enum int _MM_EXCEPT_OVERFLOW   = 0x0008;
33 enum int _MM_EXCEPT_UNDERFLOW  = 0x0010;
34 enum int _MM_EXCEPT_INEXACT    = 0x0020;
35 enum int _MM_EXCEPT_MASK       = 0x003f;
36 
37 enum int _MM_MASK_INVALID      = 0x0080;
38 enum int _MM_MASK_DENORM       = 0x0100;
39 enum int _MM_MASK_DIV_ZERO     = 0x0200;
40 enum int _MM_MASK_OVERFLOW     = 0x0400;
41 enum int _MM_MASK_UNDERFLOW    = 0x0800;
42 enum int _MM_MASK_INEXACT      = 0x1000;
43 enum int _MM_MASK_MASK         = 0x1f80;
44 
45 enum int _MM_ROUND_NEAREST     = 0x0000;
46 enum int _MM_ROUND_DOWN        = 0x2000;
47 enum int _MM_ROUND_UP          = 0x4000;
48 enum int _MM_ROUND_TOWARD_ZERO = 0x6000;
49 enum int _MM_ROUND_MASK        = 0x6000;
50 
51 enum int _MM_FLUSH_ZERO_MASK   = 0x8000;
52 enum int _MM_FLUSH_ZERO_ON     = 0x8000;
53 enum int _MM_FLUSH_ZERO_OFF    = 0x0000;
54 
55 __m128 _mm_add_ps(__m128 a, __m128 b) pure @safe
56 {
57     return a + b;
58 }
59 
60 unittest
61 {
62     __m128 a = [1, 2, 3, 4];
63     a = _mm_add_ps(a, a);
64     assert(a.array[0] == 2);
65     assert(a.array[1] == 4);
66     assert(a.array[2] == 6);
67     assert(a.array[3] == 8);
68 }
69 
70 __m128 _mm_add_ss(__m128 a, __m128 b) pure @safe
71 {
72     static if (GDC_with_SSE)
73         return __builtin_ia32_addss(a, b);
74     else
75     {
76         a[0] += b[0];
77         return a;
78     }
79 }
80 unittest
81 {
82     __m128 a = [1, 2, 3, 4];
83     a = _mm_add_ss(a, a);
84     assert(a.array == [2.0f, 2, 3, 4]);
85 }
86 
87 __m128 _mm_and_ps (__m128 a, __m128 b) pure @safe
88 {
89     return cast(__m128)(cast(__m128i)a & cast(__m128i)b);
90 }
91 unittest
92 {
93     // Note: tested in emmintrin.d
94 }
95 
96 __m128 _mm_andnot_ps (__m128 a, __m128 b) pure @safe
97 {
98     return cast(__m128)( (~cast(__m128i)a) & cast(__m128i)b );
99 }
100 
101 /// Average packed unsigned 16-bit integers in ``a` and `b`.
102 __m64 _mm_avg_pu16 (__m64 a, __m64 b) pure @safe
103 {
104     return to_m64(_mm_avg_epu16(to_m128i(a), to_m128i(b)));
105 }
106 
107 /// Average packed unsigned 8-bit integers in ``a` and `b`.
108 __m64 _mm_avg_pu8 (__m64 a, __m64 b) pure @safe
109 {
110     return to_m64(_mm_avg_epu8(to_m128i(a), to_m128i(b)));
111 }
112 
113 __m128 _mm_cmpeq_ps (__m128 a, __m128 b) pure @safe
114 {
115     return cast(__m128) cmpps!(FPComparison.oeq)(a, b);
116 }
117 
118 __m128 _mm_cmpeq_ss (__m128 a, __m128 b) pure @safe
119 {
120     return cast(__m128) cmpss!(FPComparison.oeq)(a, b);
121 }
122 
123 __m128 _mm_cmpge_ps (__m128 a, __m128 b) pure @safe
124 {
125     return cast(__m128) cmpps!(FPComparison.oge)(a, b);
126 }
127 unittest
128 {
129     __m128i R = cast(__m128i) _mm_cmpge_ps(_mm_setr_ps(0, 1, -1, float.nan),
130                                            _mm_setr_ps(0, 0, 0, 0));
131     int[4] correct = [-1, -1, 0, 0];
132     assert(R.array == correct);
133 }
134 
135 __m128 _mm_cmpge_ss (__m128 a, __m128 b) pure @safe
136 {
137     return cast(__m128) cmpss!(FPComparison.oge)(a, b);
138 }
139 
140 __m128 _mm_cmpgt_ps (__m128 a, __m128 b) pure @safe
141 {
142     return cast(__m128) cmpps!(FPComparison.ogt)(a, b);
143 }
144 
145 __m128 _mm_cmpgt_ss (__m128 a, __m128 b) pure @safe
146 {
147     return cast(__m128) cmpss!(FPComparison.ogt)(a, b);
148 }
149 
150 __m128 _mm_cmple_ps (__m128 a, __m128 b) pure @safe
151 {
152     return cast(__m128) cmpps!(FPComparison.ole)(a, b);
153 }
154 
155 __m128 _mm_cmple_ss (__m128 a, __m128 b) pure @safe
156 {
157     return cast(__m128) cmpss!(FPComparison.ole)(a, b);
158 }
159 
160 __m128 _mm_cmplt_ps (__m128 a, __m128 b) pure @safe
161 {
162     return cast(__m128) cmpps!(FPComparison.olt)(a, b);
163 }
164 
165 __m128 _mm_cmplt_ss (__m128 a, __m128 b) pure @safe
166 {
167     return cast(__m128) cmpss!(FPComparison.olt)(a, b);
168 }
169 
170 __m128 _mm_cmpneq_ps (__m128 a, __m128 b) pure @safe
171 {
172     return cast(__m128) cmpps!(FPComparison.une)(a, b);
173 }
174 
175 __m128 _mm_cmpneq_ss (__m128 a, __m128 b) pure @safe
176 {
177     return cast(__m128) cmpss!(FPComparison.une)(a, b);
178 }
179 
180 __m128 _mm_cmpnge_ps (__m128 a, __m128 b) pure @safe
181 {
182     return cast(__m128) cmpps!(FPComparison.ult)(a, b);
183 }
184 
185 __m128 _mm_cmpnge_ss (__m128 a, __m128 b) pure @safe
186 {
187     return cast(__m128) cmpss!(FPComparison.ult)(a, b);
188 }
189 
190 __m128 _mm_cmpngt_ps (__m128 a, __m128 b) pure @safe
191 {
192     return cast(__m128) cmpps!(FPComparison.ule)(a, b);
193 }
194 
195 __m128 _mm_cmpngt_ss (__m128 a, __m128 b) pure @safe
196 {
197     return cast(__m128) cmpss!(FPComparison.ule)(a, b);
198 }
199 
200 __m128 _mm_cmpnle_ps (__m128 a, __m128 b) pure @safe
201 {
202     return cast(__m128) cmpps!(FPComparison.ugt)(a, b);
203 }
204 
205 __m128 _mm_cmpnle_ss (__m128 a, __m128 b) pure @safe
206 {
207     return cast(__m128) cmpss!(FPComparison.ugt)(a, b);
208 }
209 
210 __m128 _mm_cmpnlt_ps (__m128 a, __m128 b) pure @safe
211 {
212     return cast(__m128) cmpps!(FPComparison.uge)(a, b);
213 }
214 
215 __m128 _mm_cmpnlt_ss (__m128 a, __m128 b) pure @safe
216 {
217     return cast(__m128) cmpss!(FPComparison.uge)(a, b);
218 }
219 
220 __m128 _mm_cmpord_ps (__m128 a, __m128 b) pure @safe
221 {
222     return cast(__m128) cmpps!(FPComparison.ord)(a, b);
223 }
224 
225 __m128 _mm_cmpord_ss (__m128 a, __m128 b) pure @safe
226 {
227     return cast(__m128) cmpss!(FPComparison.ord)(a, b);
228 }
229 
230 __m128 _mm_cmpunord_ps (__m128 a, __m128 b) pure @safe
231 {
232     return cast(__m128) cmpps!(FPComparison.uno)(a, b);
233 }
234 
235 __m128 _mm_cmpunord_ss (__m128 a, __m128 b) pure @safe
236 {
237     return cast(__m128) cmpss!(FPComparison.uno)(a, b);
238 }
239 
240 // Note: we've reverted clang and GCC behaviour with regards to EFLAGS
241 // Some such comparisons yields true for NaNs, other don't.
242 
243 int _mm_comieq_ss (__m128 a, __m128 b) pure @safe // comiss + sete
244 {
245     return comss!(FPComparison.ueq)(a, b); // yields true for NaN!
246 }
247 
248 int _mm_comige_ss (__m128 a, __m128 b) pure @safe // comiss + setae
249 {
250     return comss!(FPComparison.oge)(a, b);
251 }
252 
253 int _mm_comigt_ss (__m128 a, __m128 b) pure @safe // comiss + seta
254 {
255     return comss!(FPComparison.ogt)(a, b);
256 }
257 
258 int _mm_comile_ss (__m128 a, __m128 b) pure @safe // comiss + setbe
259 {
260     return comss!(FPComparison.ule)(a, b); // yields true for NaN!
261 }
262 
263 int _mm_comilt_ss (__m128 a, __m128 b) pure @safe // comiss + setb
264 {
265     return comss!(FPComparison.ult)(a, b); // yields true for NaN!
266 }
267 
268 int _mm_comineq_ss (__m128 a, __m128 b) pure @safe // comiss + setne
269 {
270     return comss!(FPComparison.one)(a, b);
271 }
272 
273 alias _mm_cvt_pi2ps = _mm_cvtpi32_ps;
274 
275 __m64 _mm_cvt_ps2pi (__m128 a) pure @safe
276 {
277     return to_m64(_mm_cvtps_epi32(a));
278 }
279 
280 __m128 _mm_cvt_si2ss(__m128 v, int x) pure @trusted
281 {
282     v.ptr[0] = cast(float)x;
283     return v;
284 }
285 unittest
286 {
287     __m128 a = _mm_cvt_si2ss(_mm_set1_ps(0.0f), 42);
288     assert(a.array == [42f, 0, 0, 0]);
289 }
290 
291 // Note: is just another name for _mm_cvtss_si32
292 alias _mm_cvt_ss2si = _mm_cvtss_si32;
293 
294 
295 __m128 _mm_cvtpi16_ps (__m64 a) pure @safe
296 {
297     __m128i ma = to_m128i(a);
298     ma = _mm_unpacklo_epi16(ma, _mm_setzero_si128()); // Zero-extend to 32-bit
299     ma = _mm_srai_epi32(_mm_slli_epi32(ma, 16), 16); // Replicate sign bit
300     return _mm_cvtepi32_ps(ma);
301 }
302 unittest
303 {
304     __m64 A = _mm_setr_pi16(-1, 2, -3, 4);
305     __m128 R = _mm_cvtpi16_ps(A);
306     float[4] correct = [-1.0f, 2.0f, -3.0f, 4.0f];
307     assert(R.array == correct);
308 }
309 
310 __m128 _mm_cvtpi32_ps (__m128 a, __m64 b) pure @trusted
311 {
312     __m128 fb = _mm_cvtepi32_ps(to_m128i(b));
313     a.ptr[0] = fb.array[0];
314     a.ptr[1] = fb.array[1];
315     return a;
316 }
317 unittest
318 {
319     __m128 R = _mm_cvtpi32_ps(_mm_set1_ps(4.0f), _mm_setr_pi32(1, 2));
320     float[4] correct = [1.0f, 2.0f, 4.0f, 4.0f];
321     assert(R.array == correct);
322 }
323 
324 
325 __m128 _mm_cvtpi32x2_ps (__m64 a, __m64 b) pure @trusted
326 {
327     long2 l;
328     l.ptr[0] = a.array[0];
329     l.ptr[1] = b.array[0];
330     return _mm_cvtepi32_ps(cast(__m128i)l);
331 }
332 
333 __m128 _mm_cvtpi8_ps (__m64 a) pure @safe
334 {
335     __m128i b = to_m128i(a); 
336 
337     // Zero extend to 32-bit
338     b = _mm_unpacklo_epi8(b, _mm_setzero_si128());
339     b = _mm_unpacklo_epi16(b, _mm_setzero_si128());
340 
341     // Replicate sign bit
342     b = _mm_srai_epi32(_mm_slli_epi32(b, 24), 24); // Replicate sign bit
343     return _mm_cvtepi32_ps(b);
344 }
345 unittest
346 {
347     __m64 A = _mm_setr_pi8(-1, 2, -3, 4, 0, 0, 0, 0);
348     __m128 R = _mm_cvtpi8_ps(A);
349     float[4] correct = [-1.0f, 2.0f, -3.0f, 4.0f];
350     assert(R.array == correct);
351 }
352 
353 __m64 _mm_cvtps_pi16 (__m128 a) pure @safe
354 {
355     // The C++ version of this intrinsic convert to 32-bit float, then use packssdw
356     // Which means the 16-bit integers should be saturated
357     __m128i b = _mm_cvtps_epi32(a);
358     b = _mm_packs_epi32(b, b);
359     return to_m64(b);
360 }
361 unittest
362 {
363     __m128 A = _mm_setr_ps(-1.0f, 2.0f, -33000.0f, 70000.0f);
364     short4 R = cast(short4) _mm_cvtps_pi16(A);
365     short[4] correct = [-1, 2, -32768, 32767];
366     assert(R.array == correct);
367 }
368 
369 __m64 _mm_cvtps_pi32 (__m128 a) pure @safe
370 {
371     return to_m64(_mm_cvtps_epi32(a));
372 }
373 unittest
374 {
375     __m128 A = _mm_setr_ps(-33000.0f, 70000.0f, -1.0f, 2.0f, );
376     int2 R = cast(int2) _mm_cvtps_pi32(A);
377     int[2] correct = [-33000, 70000];
378     assert(R.array == correct);
379 }
380 
381 __m64 _mm_cvtps_pi8 (__m128 a) pure @safe
382 {
383     // The C++ version of this intrinsic convert to 32-bit float, then use packssdw + packsswb
384     // Which means the 8-bit integers should be saturated
385     __m128i b = _mm_cvtps_epi32(a);
386     b = _mm_packs_epi32(b, _mm_setzero_si128());
387     b = _mm_packs_epi16(b, _mm_setzero_si128());
388     return to_m64(b);
389 }
390 unittest
391 {
392     __m128 A = _mm_setr_ps(-1.0f, 2.0f, -129.0f, 128.0f);
393     byte8 R = cast(byte8) _mm_cvtps_pi8(A);
394     byte[8] correct = [-1, 2, -128, 127, 0, 0, 0, 0];
395     assert(R.array == correct);
396 }
397 
398 __m128 _mm_cvtpu16_ps (__m64 a) pure @safe
399 {
400     __m128i ma = to_m128i(a);
401     ma = _mm_unpacklo_epi16(ma, _mm_setzero_si128()); // Zero-extend to 32-bit
402     return _mm_cvtepi32_ps(ma);
403 }
404 unittest
405 {
406     __m64 A = _mm_setr_pi16(-1, 2, -3, 4);
407     __m128 R = _mm_cvtpu16_ps(A);
408     float[4] correct = [65535.0f, 2.0f, 65533.0f, 4.0f];
409     assert(R.array == correct);
410 }
411 
412 __m128 _mm_cvtpu8_ps (__m64 a) pure @safe
413 {
414     __m128i b = to_m128i(a); 
415 
416     // Zero extend to 32-bit
417     b = _mm_unpacklo_epi8(b, _mm_setzero_si128());
418     b = _mm_unpacklo_epi16(b, _mm_setzero_si128());
419     return _mm_cvtepi32_ps(b);
420 }
421 unittest
422 {
423     __m64 A = _mm_setr_pi8(-1, 2, -3, 4, 0, 0, 0, 0);
424     __m128 R = _mm_cvtpu8_ps(A);
425     float[4] correct = [255.0f, 2.0f, 253.0f, 4.0f];
426     assert(R.array == correct);
427 }
428 
429 __m128 _mm_cvtsi32_ss(__m128 v, int x) pure @trusted
430 {
431     v.ptr[0] = cast(float)x;
432     return v;
433 }
434 unittest
435 {
436     __m128 a = _mm_cvtsi32_ss(_mm_set1_ps(0.0f), 42);
437     assert(a.array == [42.0f, 0, 0, 0]);
438 }
439 
440 // Note: on macOS, using "llvm.x86.sse.cvtsi642ss" was buggy
441 __m128 _mm_cvtsi64_ss(__m128 v, long x) pure @trusted
442 {
443     v.ptr[0] = cast(float)x;
444     return v;
445 }
446 unittest
447 {
448     __m128 a = _mm_cvtsi64_ss(_mm_set1_ps(0.0f), 42);
449     assert(a.array == [42.0f, 0, 0, 0]);
450 }
451 
452 float _mm_cvtss_f32(__m128 a) pure @safe
453 {
454     return a.array[0];
455 }
456 
457 version(LDC)
458 {
459     alias _mm_cvtss_si32 = __builtin_ia32_cvtss2si;
460 }
461 else
462 {
463     int _mm_cvtss_si32 (__m128 a) pure @safe
464     {
465         return convertFloatToInt32UsingMXCSR(a.array[0]);
466     }
467 }
468 unittest
469 {
470     assert(1 == _mm_cvtss_si32(_mm_setr_ps(1.0f, 2.0f, 3.0f, 4.0f)));
471 }
472 
473 version(LDC)
474 {
475     version(X86_64)
476         alias _mm_cvtss_si64 = __builtin_ia32_cvtss2si64;
477     else
478     {
479         // Note: __builtin_ia32_cvtss2si64 crashes LDC in 32-bit
480         long _mm_cvtss_si64 (__m128 a) pure @safe
481         {
482             return convertFloatToInt64UsingMXCSR(a.array[0]);
483         }
484     }
485 }
486 else
487 {
488     long _mm_cvtss_si64 (__m128 a) pure @safe
489     {
490         return convertFloatToInt64UsingMXCSR(a.array[0]);
491     }
492 }
493 unittest
494 {
495     assert(1 == _mm_cvtss_si64(_mm_setr_ps(1.0f, 2.0f, 3.0f, 4.0f)));
496 
497     uint savedRounding = _MM_GET_ROUNDING_MODE();
498 
499     _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST);
500     assert(-86186 == _mm_cvtss_si64(_mm_set1_ps(-86186.5f)));
501 
502     _MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN);
503     assert(-86187 == _mm_cvtss_si64(_mm_set1_ps(-86186.1f)));
504 
505     _MM_SET_ROUNDING_MODE(_MM_ROUND_UP);
506     assert(86187 == _mm_cvtss_si64(_mm_set1_ps(86186.1f)));
507 
508     _MM_SET_ROUNDING_MODE(_MM_ROUND_TOWARD_ZERO);
509     assert(-86186 == _mm_cvtss_si64(_mm_set1_ps(-86186.9f)));
510 
511     _MM_SET_ROUNDING_MODE(savedRounding);
512 }
513 
514 
515 version(LDC)
516 {
517     alias _mm_cvtt_ss2si = __builtin_ia32_cvttss2si;
518 }
519 else
520 {
521     int _mm_cvtt_ss2si (__m128 a) pure @safe
522     {
523         return cast(int)(a.array[0]);
524     }
525 }
526 unittest
527 {
528     assert(1 == _mm_cvtt_ss2si(_mm_setr_ps(1.9f, 2.0f, 3.0f, 4.0f)));
529 }
530 
531 __m64 _mm_cvtt_ps2pi (__m128 a) pure @safe
532 {
533     return to_m64(_mm_cvttps_epi32(a));
534 }
535 
536 alias _mm_cvttss_si32 = _mm_cvtt_ss2si; // it's actually the same op
537 
538 // Note: __builtin_ia32_cvttss2si64 crashes LDC when generating 32-bit x86 code.
539 long _mm_cvttss_si64 (__m128 a) pure @safe
540 {
541     return cast(long)(a.array[0]); // Generates cvttss2si as expected
542 }
543 unittest
544 {
545     assert(1 == _mm_cvttss_si64(_mm_setr_ps(1.9f, 2.0f, 3.0f, 4.0f)));
546 }
547 
548 __m128 _mm_div_ps(__m128 a, __m128 b) pure @safe
549 {
550     return a / b;
551 }
552 unittest
553 {
554     __m128 a = [1.5f, -2.0f, 3.0f, 1.0f];
555     a = _mm_div_ps(a, a);
556     float[4] correct = [1.0f, 1.0f, 1.0f, 1.0f];
557     assert(a.array == correct);
558 }
559 
560 __m128 _mm_div_ss(__m128 a, __m128 b) pure @safe
561 {
562     static if (GDC_with_SSE)
563         return __builtin_ia32_divss(a, b);
564     else
565     {
566         a[0] /= b[0];
567         return a;
568     }
569 }
570 unittest
571 {
572     __m128 a = [1.5f, -2.0f, 3.0f, 1.0f];
573     a = _mm_div_ss(a, a);
574     float[4] correct = [1.0f, -2.0, 3.0f, 1.0f];
575     assert(a.array == correct);
576 }
577 
578 int _mm_extract_pi16 (__m64 a, int imm8)
579 {
580     short4 sa = cast(short4)a;
581     return cast(ushort)(sa.array[imm8]);
582 }
583 unittest
584 {
585     __m64 A = _mm_setr_pi16(-1, 6, 0, 4);
586     assert(_mm_extract_pi16(A, 0) == 65535);
587     assert(_mm_extract_pi16(A, 1) == 6);
588     assert(_mm_extract_pi16(A, 2) == 0);
589     assert(_mm_extract_pi16(A, 3) == 4);
590 }
591 
592 /// Free aligned memory that was allocated with `_mm_malloc`.
593 void _mm_free(void * mem_addr) @trusted
594 {
595     // support for free(NULL)
596     if (mem_addr is null)
597         return;
598 
599     // Technically we don't need to store size and alignement in the chunk, but we do in case we
600     // have to implement _mm_realloc
601 
602     size_t pointerSize = (void*).sizeof;
603     void** rawLocation = cast(void**)(cast(char*)mem_addr - size_t.sizeof);
604     size_t* alignmentLocation = cast(size_t*)(cast(char*)mem_addr - 3 * pointerSize);
605     size_t alignment = *alignmentLocation;
606     assert(alignment != 0);
607     assert(isPointerAligned(mem_addr, alignment));
608     free(*rawLocation);
609 }
610 
611 uint _MM_GET_EXCEPTION_MASK() pure @safe
612 {
613     return _mm_getcsr() & _MM_MASK_MASK;
614 }
615 
616 uint _MM_GET_EXCEPTION_STATE() pure @safe
617 {
618     return _mm_getcsr() & _MM_EXCEPT_MASK;
619 }
620 
621 uint _MM_GET_FLUSH_ZERO_MODE() pure @safe
622 {
623     return _mm_getcsr() & _MM_FLUSH_ZERO_MASK;
624 }
625 
626 uint _MM_GET_ROUNDING_MODE() pure @safe
627 {
628     return _mm_getcsr() & _MM_ROUND_MASK;
629 }
630 
631 uint _mm_getcsr() pure @safe
632 {
633     version(GNU)
634     {
635         static if (GDC_with_SSE)
636         {
637             return __builtin_ia32_stmxcsr();
638         }
639         else version(X86)
640         {
641             uint sseRounding = 0;
642             asm pure nothrow @nogc @trusted
643             {
644                 "stmxcsr %0;\n" 
645                   : "=m" (sseRounding)
646                   : 
647                   : ;
648             }
649             return sseRounding;
650         }
651         else
652             static assert(false);
653     }
654     else version (InlineX86Asm)
655     {
656         uint controlWord;
657         asm nothrow @nogc pure @safe
658         {
659             stmxcsr controlWord;
660         }
661         return controlWord;
662     }
663     else
664         static assert(0, "Not yet supported");
665 }
666 unittest
667 {
668     uint csr = _mm_getcsr();
669 }
670 
671 __m64 _mm_insert_pi16 (__m64 v, int i, int index) pure @trusted
672 {
673     short4 r = cast(short4)v;
674     r.ptr[index & 3] = cast(short)i;
675     return cast(__m64)r;
676 }
677 unittest
678 {
679     __m64 A = _mm_set_pi16(3, 2, 1, 0);
680     short4 R = cast(short4) _mm_insert_pi16(A, 42, 1 | 4);
681     short[4] correct = [0, 42, 2, 3];
682     assert(R.array == correct);
683 }
684 
685 __m128 _mm_load_ps(const(float)*p) pure @trusted
686 {
687     return *cast(__m128*)p;
688 }
689 
690 __m128 _mm_load_ps1(const(float)*p) pure @trusted
691 {
692     return __m128(*p);
693 }
694 
695 __m128 _mm_load_ss (const(float)* mem_addr) pure @trusted
696 {
697     __m128 r;
698     r.ptr[0] = *mem_addr;
699     r.ptr[1] = 0;
700     r.ptr[2] = 0;
701     r.ptr[3] = 0;
702     return r;
703 }
704 
705 alias _mm_load1_ps = _mm_load_ps1;
706 
707 __m128 _mm_loadh_pi (__m128 a, const(__m64)* mem_addr) pure @trusted
708 {
709     long2 la = cast(long2)a;
710     la.ptr[1] = (*mem_addr).array[0];
711     return cast(__m128)la;
712 }
713 
714 __m128 _mm_loadl_pi (__m128 a, const(__m64)* mem_addr) pure @trusted
715 {
716     long2 la = cast(long2)a;
717     la.ptr[0] = (*mem_addr).array[0];
718     return cast(__m128)la;
719 }
720 
721 __m128 _mm_loadr_ps (const(float)* mem_addr) pure @trusted
722 {
723     __m128* aligned = cast(__m128*)mem_addr;
724     __m128 a = *aligned;
725     __m128 r;
726     r.ptr[0] = a.array[3];
727     r.ptr[1] = a.array[2];
728     r.ptr[2] = a.array[1];
729     r.ptr[3] = a.array[0];
730     return r;
731 }
732 
733 __m128 _mm_loadu_ps(const(float)*p) pure @safe
734 {
735     return loadUnaligned!(__m128)(p);
736 }
737 
738 __m128i _mm_loadu_si16(const(void)* mem_addr) pure @trusted
739 {
740     short r = *cast(short*)(mem_addr);
741     short8 result = [0, 0, 0, 0, 0, 0, 0, 0];
742     result.ptr[0] = r;
743     return cast(__m128i)result;
744 }
745 unittest
746 {
747     short r = 13;
748     short8 A = cast(short8) _mm_loadu_si16(&r);
749     short[8] correct = [13, 0, 0, 0, 0, 0, 0, 0];
750     assert(A.array == correct);
751 }
752 
753 __m128i _mm_loadu_si64(const(void)* mem_addr) pure @trusted
754 {
755     long r = *cast(long*)(mem_addr);
756     long2 result = [0, 0];
757     result.ptr[0] = r;
758     return cast(__m128i)result;
759 }
760 unittest
761 {
762     long r = 446446446446;
763     long2 A = cast(long2) _mm_loadu_si64(&r);
764     long[2] correct = [446446446446, 0];
765     assert(A.array == correct);
766 }
767 
768 /// Allocate size bytes of memory, aligned to the alignment specified in align,
769 /// and return a pointer to the allocated memory. `_mm_free` should be used to free
770 /// memory that is allocated with `_mm_malloc`.
771 void* _mm_malloc(size_t size, size_t alignment) @trusted
772 {
773     assert(alignment != 0);
774     size_t request = requestedSize(size, alignment);
775     void* raw = malloc(request);
776     if (request > 0 && raw == null) // malloc(0) can validly return anything
777         onOutOfMemoryError();
778     return storeRawPointerPlusInfo(raw, size, alignment); // PERF: no need to store size
779 }
780 
781 void _mm_maskmove_si64 (__m64 a, __m64 mask, char* mem_addr) @trusted
782 {
783     // this works since mask is zero-extended
784     return _mm_maskmoveu_si128 (to_m128i(a), to_m128i(mask), mem_addr);
785 }
786 
787 deprecated alias _m_maskmovq = _mm_maskmove_si64;
788 
789 __m64 _mm_max_pi16 (__m64 a, __m64 b) pure @safe
790 {
791     return to_m64(_mm_max_epi16(to_m128i(a), to_m128i(b)));
792 }
793 
794 static if (GDC_with_SSE)
795 {
796     alias _mm_max_ps = __builtin_ia32_maxps;
797 }
798 else version(LDC)
799 {
800     alias _mm_max_ps = __builtin_ia32_maxps;
801 }
802 else
803 {
804     __m128 _mm_max_ps(__m128 a, __m128 b) pure @safe
805     {
806         __m128 r;
807         r[0] = (a[0] > b[0]) ? a[0] : b[0];
808         r[1] = (a[1] > b[1]) ? a[1] : b[1];
809         r[2] = (a[2] > b[2]) ? a[2] : b[2];
810         r[3] = (a[3] > b[3]) ? a[3] : b[3];
811         return r;
812     }
813 }
814 unittest
815 {
816     __m128 A = _mm_setr_ps(1, 2, float.nan, 4);
817     __m128 B = _mm_setr_ps(4, 1, 4, float.nan);
818     __m128 M = _mm_max_ps(A, B);
819     assert(M.array[0] == 4);
820     assert(M.array[1] == 2);
821     assert(M.array[2] == 4);    // in case of NaN, second operand prevails (as it seems)
822     assert(M.array[3] != M.array[3]); // in case of NaN, second operand prevails (as it seems)
823 }
824 
825 __m64 _mm_max_pu8 (__m64 a, __m64 b) pure @safe
826 {
827     return to_m64(_mm_max_epu8(to_m128i(a), to_m128i(b)));
828 }
829 
830 static if (GDC_with_SSE)
831 {
832     alias _mm_max_ss = __builtin_ia32_maxss;
833 }
834 else version(LDC)
835 {
836     alias _mm_max_ss = __builtin_ia32_maxss;
837 }
838 else
839 {
840     __m128 _mm_max_ss(__m128 a, __m128 b) pure @safe
841     {
842         __m128 r = a;
843         r[0] = (a[0] > b[0]) ? a[0] : b[0];
844         return r;
845     }
846 }
847 unittest
848 {
849     __m128 A = _mm_setr_ps(1, 2, 3, 4);
850     __m128 B = _mm_setr_ps(4, 1, 4, 1);
851     __m128 C = _mm_setr_ps(float.nan, 1, 4, 1);
852     __m128 M = _mm_max_ss(A, B);
853     assert(M.array[0] == 4);
854     assert(M.array[1] == 2);
855     assert(M.array[2] == 3);
856     assert(M.array[3] == 4);
857     M = _mm_max_ps(A, C); // in case of NaN, second operand prevails
858     assert(M.array[0] != M.array[0]);
859     M = _mm_max_ps(C, A); // in case of NaN, second operand prevails
860     assert(M.array[0] == 1);
861 }
862 
863 __m64 _mm_min_pi16 (__m64 a, __m64 b) pure @safe
864 {
865     return to_m64(_mm_min_epi16(to_m128i(a), to_m128i(b)));
866 }
867 
868 static if (GDC_with_SSE)
869 {
870     alias _mm_min_ps = __builtin_ia32_minps;
871 }
872 else version(LDC)
873 {
874     alias _mm_min_ps = __builtin_ia32_minps;
875 }
876 else
877 {
878     __m128 _mm_min_ps(__m128 a, __m128 b) pure @safe
879     {
880         __m128 r;
881         r[0] = (a[0] < b[0]) ? a[0] : b[0];
882         r[1] = (a[1] < b[1]) ? a[1] : b[1];
883         r[2] = (a[2] < b[2]) ? a[2] : b[2];
884         r[3] = (a[3] < b[3]) ? a[3] : b[3];
885         return r;
886     }
887 }
888 unittest
889 {
890     __m128 A = _mm_setr_ps(1, 2, float.nan, 4);
891     __m128 B = _mm_setr_ps(4, 1, 4, float.nan);
892     __m128 M = _mm_min_ps(A, B);
893     assert(M.array[0] == 1);
894     assert(M.array[1] == 1);
895     assert(M.array[2] == 4);    // in case of NaN, second operand prevails (as it seems)
896     assert(M.array[3] != M.array[3]); // in case of NaN, second operand prevails (as it seems)
897 }
898 
899 __m64 _mm_min_pu8 (__m64 a, __m64 b) pure @safe
900 {
901     return to_m64(_mm_min_epu8(to_m128i(a), to_m128i(b)));
902 }
903 
904 static if (GDC_with_SSE)
905 {
906     alias _mm_min_ss = __builtin_ia32_minss;
907 }
908 else version(LDC)
909 {
910     alias _mm_min_ss = __builtin_ia32_minss;
911 }
912 else
913 {
914     __m128 _mm_min_ss(__m128 a, __m128 b) pure @safe
915     {
916         __m128 r = a;
917         r[0] = (a[0] < b[0]) ? a[0] : b[0];
918         return r;
919     }
920 }
921 unittest
922 {
923     __m128 A = _mm_setr_ps(1, 2, 3, 4);
924     __m128 B = _mm_setr_ps(4, 1, 4, 1);
925     __m128 C = _mm_setr_ps(float.nan, 1, 4, 1);
926     __m128 M = _mm_min_ss(A, B);
927     assert(M.array[0] == 1);
928     assert(M.array[1] == 2);
929     assert(M.array[2] == 3);
930     assert(M.array[3] == 4);
931     M = _mm_min_ps(A, C); // in case of NaN, second operand prevails
932     assert(M.array[0] != M.array[0]);
933     M = _mm_min_ps(C, A); // in case of NaN, second operand prevails
934     assert(M.array[0] == 1);
935 }
936 
937 __m128 _mm_move_ss (__m128 a, __m128 b) pure @trusted
938 {
939     a.ptr[0] = b.array[0];
940     return a;
941 }
942 
943 __m128 _mm_movehl_ps (__m128 a, __m128 b) pure @trusted
944 {
945     b.ptr[0] = a.array[2];
946     b.ptr[1] = a.array[3];
947     return b;
948 }
949 
950 __m128 _mm_movelh_ps (__m128 a, __m128 b) pure @trusted
951 {
952     a.ptr[2] = b.array[0];
953     a.ptr[3] = b.array[1];
954     return a;
955 }
956 
957 int _mm_movemask_pi8 (__m64 a) pure @safe
958 {
959     return _mm_movemask_epi8(to_m128i(a));
960 }
961 unittest
962 {
963     assert(0x9C == _mm_movemask_pi8(_mm_set_pi8(-1, 0, 0, -1, -1, -1, 0, 0)));
964 }
965 
966 static if (GDC_with_SSE)
967 {
968     alias _mm_movemask_ps = __builtin_ia32_movmskps;
969 }
970 else version(LDC)
971 {
972     alias _mm_movemask_ps = __builtin_ia32_movmskps;
973 }
974 else
975 {
976     int _mm_movemask_ps (__m128 a) pure @safe
977     {
978         int4 ai = cast(int4)a;
979         int r = 0;
980         if (ai[0] < 0) r += 1;
981         if (ai[1] < 0) r += 2;
982         if (ai[2] < 0) r += 4;
983         if (ai[3] < 0) r += 8;
984         return r;
985     }
986 }
987 unittest
988 {
989     int4 A = [-1, 0, -43, 0];
990     assert(5 == _mm_movemask_ps(cast(float4)A));
991 }
992 
993 __m128 _mm_mul_ps(__m128 a, __m128 b) pure @safe
994 {
995     return a * b;
996 }
997 unittest
998 {
999     __m128 a = [1.5f, -2.0f, 3.0f, 1.0f];
1000     a = _mm_mul_ps(a, a);
1001     float[4] correct = [2.25f, 4.0f, 9.0f, 1.0f];
1002     assert(a.array == correct);
1003 }
1004 
1005 __m128 _mm_mul_ss(__m128 a, __m128 b) pure @safe
1006 {
1007     static if (GDC_with_SSE)
1008         return __builtin_ia32_mulss(a, b);
1009     else
1010     {
1011         a[0] *= b[0];
1012         return a;
1013     }
1014 }
1015 unittest
1016 {
1017     __m128 a = [1.5f, -2.0f, 3.0f, 1.0f];
1018     a = _mm_mul_ss(a, a);
1019     float[4] correct = [2.25f, -2.0f, 3.0f, 1.0f];
1020     assert(a.array == correct);
1021 }
1022 
1023 __m64 _mm_mulhi_pu16 (__m64 a, __m64 b) pure @safe
1024 {
1025     return to_m64(_mm_mulhi_epu16(to_m128i(a), to_m128i(b)));
1026 }
1027 unittest
1028 {
1029     __m64 A = _mm_setr_pi16(0, -16, 2, 3);
1030     __m64 B = _mm_set1_pi16(16384);
1031     short4 R = cast(short4)_mm_mulhi_pu16(A, B);
1032     short[4] correct = [0, 0x3FFC, 0, 0];
1033     assert(R.array == correct);
1034 }
1035 
1036 __m128 _mm_or_ps (__m128 a, __m128 b) pure @safe
1037 {
1038     return cast(__m128)(cast(__m128i)a | cast(__m128i)b);
1039 }
1040 
1041 deprecated alias 
1042     _m_pavgb = _mm_avg_pu8,
1043     _m_pavgw = _mm_avg_pu16,
1044     _m_pextrw = _mm_extract_pi16,
1045     _m_pinsrw = _mm_insert_pi16,
1046     _m_pmaxsw = _mm_max_pi16,
1047     _m_pmaxub = _mm_max_pu8,
1048     _m_pminsw = _mm_min_pi16,
1049     _m_pminub = _mm_min_pu8,
1050     _m_pmovmskb = _mm_movemask_pi8,
1051     _m_pmulhuw = _mm_mulhi_pu16;
1052 
1053 enum _MM_HINT_NTA = 0;
1054 enum _MM_HINT_T0 = 1;
1055 enum _MM_HINT_T1 = 2;
1056 enum _MM_HINT_T2 = 3;
1057 
1058 // Note: locality must be compile-time, unlike Intel Intrinsics API
1059 void _mm_prefetch(int locality)(void* p) pure @safe
1060 {
1061     llvm_prefetch(p, 0, locality, 1);
1062 }
1063 
1064 deprecated alias
1065     _m_psadbw = _mm_sad_pu8,
1066     _m_pshufw = _mm_shuffle_pi16;
1067 
1068 static if (GDC_with_SSE)
1069 {
1070     alias _mm_rcp_ps = __builtin_ia32_rcpps;
1071 }
1072 else version(LDC)
1073 {
1074     alias _mm_rcp_ps = __builtin_ia32_rcpps;
1075 }
1076 else
1077 {
1078     __m128 _mm_rcp_ps (__m128 a) pure @safe
1079     {
1080         a[0] = 1.0f / a[0];
1081         a[1] = 1.0f / a[1];
1082         a[2] = 1.0f / a[2];
1083         a[3] = 1.0f / a[3];
1084         return a;
1085     }
1086 }
1087 
1088 static if (GDC_with_SSE)
1089 {
1090     alias _mm_rcp_ss = __builtin_ia32_rcpss;
1091 }
1092 else version(LDC)
1093 {
1094     alias _mm_rcp_ss = __builtin_ia32_rcpss;
1095 }
1096 else
1097 {
1098     __m128 _mm_rcp_ss (__m128 a) pure @safe
1099     {
1100         a[0] = 1.0f / a[0];
1101         return a;
1102     }
1103 }
1104 
1105 static if (GDC_with_SSE)
1106 {
1107     alias _mm_rsqrt_ps = __builtin_ia32_rsqrtps;
1108 }
1109 else version(LDC)
1110 {
1111     alias _mm_rsqrt_ps = __builtin_ia32_rsqrtps;
1112 }
1113 else
1114 {
1115     __m128 _mm_rsqrt_ps (__m128 a) pure @safe
1116     {
1117         a[0] = 1.0f / sqrt(a[0]);
1118         a[1] = 1.0f / sqrt(a[1]);
1119         a[2] = 1.0f / sqrt(a[2]);
1120         a[3] = 1.0f / sqrt(a[3]);
1121         return a;
1122     }
1123 }
1124 
1125 static if (GDC_with_SSE)
1126 {
1127     alias _mm_rsqrt_ss = __builtin_ia32_rsqrtss;
1128 }
1129 else version(LDC)
1130 {
1131     alias _mm_rsqrt_ss = __builtin_ia32_rsqrtss;
1132 }
1133 else
1134 {
1135     __m128 _mm_rsqrt_ss (__m128 a) pure @safe
1136     {
1137         a[0] = 1.0f / sqrt(a[0]);
1138         return a;
1139     }
1140 }
1141 
1142 unittest
1143 {
1144     double maxRelativeError = 0.000245; // -72 dB
1145     void testInvSqrt(float number) nothrow @nogc
1146     {
1147         __m128 A = _mm_set1_ps(number);
1148 
1149         // test _mm_rcp_ps
1150         __m128 B = _mm_rcp_ps(A);
1151         foreach(i; 0..4)
1152         {
1153             double exact = 1.0f / A.array[i];
1154             double ratio = cast(double)(B.array[i]) / cast(double)(exact);
1155             assert(abs(ratio - 1) <= maxRelativeError);
1156         }
1157 
1158         // test _mm_rcp_ss
1159         {
1160             B = _mm_rcp_ss(A);
1161             double exact = 1.0f / A.array[0];
1162             double ratio = cast(double)(B.array[0]) / cast(double)(exact);
1163             assert(abs(ratio - 1) <= maxRelativeError);
1164         }
1165 
1166         // test _mm_rsqrt_ps
1167         B = _mm_rsqrt_ps(A);
1168         foreach(i; 0..4)
1169         {
1170             double exact = 1.0f / sqrt(A.array[i]);
1171             double ratio = cast(double)(B.array[i]) / cast(double)(exact);
1172             assert(abs(ratio - 1) <= maxRelativeError);
1173         }
1174 
1175         // test _mm_rsqrt_ss
1176         {
1177             B = _mm_rsqrt_ss(A);
1178             double exact = 1.0f / sqrt(A.array[0]);
1179             double ratio = cast(double)(B.array[0]) / cast(double)(exact);
1180             assert(abs(ratio - 1) <= maxRelativeError);
1181         }
1182     }
1183 
1184     testInvSqrt(1.1f);
1185     testInvSqrt(2.45674864151f);
1186     testInvSqrt(27841456468.0f);
1187 }
1188 
1189 __m64 _mm_sad_pu8 (__m64 a, __m64 b) pure @safe
1190 {
1191     return to_m64(_mm_sad_epu8(to_m128i(a), to_m128i(b)));
1192 }
1193 
1194 void _MM_SET_EXCEPTION_MASK(int _MM_MASK_xxxx) pure @safe
1195 {
1196     _mm_setcsr((_mm_getcsr() & ~_MM_MASK_MASK) | _MM_MASK_xxxx);
1197 }
1198 
1199 void _MM_SET_EXCEPTION_STATE(int _MM_EXCEPT_xxxx) pure @safe
1200 {
1201     _mm_setcsr((_mm_getcsr() & ~_MM_EXCEPT_MASK) | _MM_EXCEPT_xxxx);
1202 }
1203 
1204 void _MM_SET_FLUSH_ZERO_MODE(int _MM_FLUSH_xxxx) pure @safe
1205 {
1206     _mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | _MM_FLUSH_xxxx);
1207 }
1208 
1209 __m128 _mm_set_ps (float e3, float e2, float e1, float e0) pure @trusted
1210 {
1211     // Note: despite appearances, generates sensible code,
1212     //       inlines correctly and is constant folded
1213     float[4] result = [e0, e1, e2, e3];
1214     return loadUnaligned!(float4)(result.ptr);
1215 }
1216 unittest
1217 {
1218     __m128 A = _mm_set_ps(3, 2, 1, 546);
1219     float[4] correct = [546.0f, 1.0f, 2.0f, 3.0f];
1220     assert(A.array == correct);
1221     assert(A.array[0] == 546.0f);
1222     assert(A.array[1] == 1.0f);
1223     assert(A.array[2] == 2.0f);
1224     assert(A.array[3] == 3.0f);
1225 }
1226 
1227 alias _mm_set_ps1 = _mm_set1_ps;
1228 
1229 void _MM_SET_ROUNDING_MODE(int _MM_ROUND_xxxx) pure @safe
1230 {
1231     _mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | _MM_ROUND_xxxx);
1232 }
1233 
1234 __m128 _mm_set_ss (float a) pure @trusted
1235 {
1236     __m128 r = _mm_setzero_ps();
1237     r.ptr[0] = a;
1238     return r;
1239 }
1240 unittest
1241 {
1242     float[4] correct = [42.0f, 0.0f, 0.0f, 0.0f];
1243     __m128 A = _mm_set_ss(42.0f);
1244     assert(A.array == correct);
1245 }
1246 
1247 __m128 _mm_set1_ps (float a) pure @trusted
1248 {
1249     return __m128(a);
1250 }
1251 unittest
1252 {
1253     float[4] correct = [42.0f, 42.0f, 42.0f, 42.0f];
1254     __m128 A = _mm_set1_ps(42.0f);
1255     assert(A.array == correct);
1256 }
1257 
1258 
1259 void _mm_setcsr(uint controlWord) pure @safe
1260 {
1261     version(GNU)
1262     {
1263         static if (GDC_with_SSE)
1264         {
1265             __builtin_ia32_ldmxcsr(controlWord);
1266         }
1267         else version(X86)
1268         {
1269             asm pure nothrow @nogc @trusted
1270             {
1271                 "ldmxcsr %0;\n" 
1272                   : 
1273                   : "m" (controlWord)
1274                   : ;
1275             }
1276         }
1277     }
1278     else version (InlineX86Asm)
1279     {
1280         asm pure nothrow @nogc @safe
1281         {
1282             ldmxcsr controlWord;
1283         }
1284     }
1285     else
1286         static assert(0, "Not yet supported");
1287 }
1288 unittest
1289 {
1290     _mm_setcsr(_mm_getcsr());
1291 }
1292 
1293 __m128 _mm_setr_ps (float e3, float e2, float e1, float e0) pure @trusted
1294 {
1295     float[4] result = [e3, e2, e1, e0];
1296     return loadUnaligned!(float4)(result.ptr);
1297 }
1298 unittest
1299 {
1300     __m128 A = _mm_setr_ps(3, 2, 1, 546);
1301     float[4] correct = [3.0f, 2.0f, 1.0f, 546.0f];
1302     assert(A.array == correct);
1303     assert(A.array[0] == 3.0f);
1304     assert(A.array[1] == 2.0f);
1305     assert(A.array[2] == 1.0f);
1306     assert(A.array[3] == 546.0f);
1307 }
1308 
1309 __m128 _mm_setzero_ps() pure @trusted
1310 {
1311     // Compiles to xorps without problems
1312     float[4] result = [0.0f, 0.0f, 0.0f, 0.0f];
1313     return loadUnaligned!(float4)(result.ptr);
1314 }
1315 
1316 version(GNU)
1317 {
1318     void _mm_sfence() pure @trusted
1319     {
1320         static if (GDC_with_SSE)
1321         {
1322             __builtin_ia32_sfence();
1323         }
1324         else version(X86)
1325         {
1326             asm pure nothrow @nogc @trusted
1327             {
1328                 "sfence;\n" : : : ;
1329             }
1330         }
1331         else
1332             static assert(false);
1333         }
1334 }
1335 else version(LDC)
1336 {
1337     alias _mm_sfence = __builtin_ia32_sfence;
1338 }
1339 else static if (DMD_with_asm)
1340 {
1341     void _mm_sfence() pure @safe
1342     {
1343         asm nothrow @nogc pure @safe
1344         {
1345             sfence;
1346         }
1347     }
1348 }
1349 else
1350     static assert(false);
1351 unittest
1352 {
1353     _mm_sfence();
1354 }
1355 
1356 __m64 _mm_shuffle_pi16(int imm8)(__m64 a) pure @safe
1357 {
1358     return cast(__m64) shufflevector!(short4, ( (imm8 >> 0) & 3 ),
1359                                               ( (imm8 >> 2) & 3 ),
1360                                               ( (imm8 >> 4) & 3 ),
1361                                               ( (imm8 >> 6) & 3 ))(cast(short4)a, cast(short4)a);
1362 }
1363 unittest
1364 {
1365     __m64 A = _mm_setr_pi16(0, 1, 2, 3);
1366     enum int SHUFFLE = _MM_SHUFFLE(0, 1, 2, 3);
1367     short4 B = cast(short4) _mm_shuffle_pi16!SHUFFLE(A);
1368     short[4] expectedB = [ 3, 2, 1, 0 ];
1369     assert(B.array == expectedB);
1370 }
1371 
1372 // Note: the immediate shuffle value is given at compile-time instead of runtime.
1373 __m128 _mm_shuffle_ps(ubyte imm)(__m128 a, __m128 b) pure @safe
1374 {
1375     return shufflevector!(__m128, imm & 3, (imm>>2) & 3, 4 + ((imm>>4) & 3), 4 + ((imm>>6) & 3) )(a, b);
1376 }
1377 
1378 static if (GDC_with_SSE)
1379 {
1380     alias _mm_sqrt_ps = __builtin_ia32_sqrtps;
1381 }
1382 else version(LDC)
1383 {
1384     // Disappeared with LDC 1.11
1385     static if (__VERSION__ < 2081)
1386         alias _mm_sqrt_ps = __builtin_ia32_sqrtps;
1387     else
1388     {
1389         __m128 _mm_sqrt_ps(__m128 vec) pure @safe
1390         {
1391             vec.array[0] = llvm_sqrt(vec.array[0]);
1392             vec.array[1] = llvm_sqrt(vec.array[1]);
1393             vec.array[2] = llvm_sqrt(vec.array[2]);
1394             vec.array[3] = llvm_sqrt(vec.array[3]);
1395             return vec;
1396         }
1397     }
1398 }
1399 else
1400 {
1401     __m128 _mm_sqrt_ps(__m128 vec) pure @trusted
1402     {
1403         vec.ptr[0] = sqrt(vec.array[0]);
1404         vec.ptr[1] = sqrt(vec.array[1]);
1405         vec.ptr[2] = sqrt(vec.array[2]);
1406         vec.ptr[3] = sqrt(vec.array[3]);
1407         return vec;
1408     }
1409 }
1410 unittest
1411 {
1412     __m128 A = _mm_sqrt_ps(_mm_set1_ps(4.0f));
1413     assert(A.array[0] == 2.0f);
1414     assert(A.array[1] == 2.0f);
1415     assert(A.array[2] == 2.0f);
1416     assert(A.array[3] == 2.0f);
1417 }
1418 
1419 static if (GDC_with_SSE)
1420 {
1421     alias _mm_sqrt_ss = __builtin_ia32_sqrtss;
1422 }
1423 else version(LDC)
1424 {
1425     // Disappeared with LDC 1.11
1426     static if (__VERSION__ < 2081)
1427         alias _mm_sqrt_ss = __builtin_ia32_sqrtss;
1428     else
1429     {
1430         __m128 _mm_sqrt_ss(__m128 vec) pure @safe
1431         {
1432             vec.array[0] = llvm_sqrt(vec.array[0]);
1433             vec.array[1] = vec.array[1];
1434             vec.array[2] = vec.array[2];
1435             vec.array[3] = vec.array[3];
1436             return vec;
1437         }
1438     }
1439 }
1440 else
1441 {
1442     __m128 _mm_sqrt_ss(__m128 vec) pure @trusted
1443     {
1444         vec.ptr[0] = sqrt(vec.array[0]);
1445         return vec;
1446     }
1447 }
1448 unittest
1449 {
1450     __m128 A = _mm_sqrt_ss(_mm_set1_ps(4.0f));
1451     assert(A.array[0] == 2.0f);
1452     assert(A.array[1] == 4.0f);
1453     assert(A.array[2] == 4.0f);
1454     assert(A.array[3] == 4.0f);
1455 }
1456 
1457 void _mm_store_ps (float* mem_addr, __m128 a) pure // not safe since nothing guarantees alignment
1458 {
1459     __m128* aligned = cast(__m128*)mem_addr;
1460     *aligned = a;
1461 }
1462 
1463 alias _mm_store_ps1 = _mm_store1_ps;
1464 
1465 void _mm_store_ss (float* mem_addr, __m128 a) pure @safe
1466 {
1467     *mem_addr = a.array[0];
1468 }
1469 unittest
1470 {
1471     float a;
1472     _mm_store_ss(&a, _mm_set_ps(3, 2, 1, 546));
1473     assert(a == 546);
1474 }
1475 
1476 void _mm_store1_ps(float* mem_addr, __m128 a) pure @trusted // not safe since nothing guarantees alignment
1477 {
1478     __m128* aligned = cast(__m128*)mem_addr;
1479     __m128 r;
1480     r.ptr[0] = a.array[0];
1481     r.ptr[1] = a.array[0];
1482     r.ptr[2] = a.array[0];
1483     r.ptr[3] = a.array[0];
1484     *aligned = r;
1485 }
1486 
1487 void _mm_storeh_pi(__m64* p, __m128 a) pure @trusted
1488 {
1489     long2 la = cast(long2)a;
1490     (*p).ptr[0] = la.array[1];
1491 }
1492 unittest
1493 {
1494     __m64 R = _mm_setzero_si64();
1495     long2 A = [13, 25];
1496     _mm_storeh_pi(&R, cast(__m128)A);
1497     assert(R.array[0] == 25);
1498 }
1499 
1500 void _mm_storel_pi(__m64* p, __m128 a) pure @trusted
1501 {
1502     long2 la = cast(long2)a;
1503     (*p).ptr[0] = la.array[0];
1504 }
1505 unittest
1506 {
1507     __m64 R = _mm_setzero_si64();
1508     long2 A = [13, 25];
1509     _mm_storel_pi(&R, cast(__m128)A);
1510     assert(R.array[0] == 13);
1511 }
1512 
1513 void _mm_storer_ps(float* mem_addr, __m128 a) pure @trusted // not safe since nothing guarantees alignment
1514 {
1515     __m128* aligned = cast(__m128*)mem_addr;
1516     __m128 r;
1517     r.ptr[0] = a.array[3];
1518     r.ptr[1] = a.array[2];
1519     r.ptr[2] = a.array[1];
1520     r.ptr[3] = a.array[0];
1521     *aligned = r;
1522 }
1523 
1524 void _mm_storeu_ps(float* mem_addr, __m128 a) pure @safe
1525 {
1526     storeUnaligned!(float4)(a, mem_addr);
1527 }
1528 
1529 void _mm_stream_pi (__m64* mem_addr, __m64 a)
1530 {
1531     // BUG see `_mm_stream_ps` for an explanation why we don't implement non-temporal moves
1532     *mem_addr = a; // it's a regular move instead
1533 }
1534 
1535 // BUG: can't implement non-temporal store with LDC inlineIR since !nontemporal
1536 // needs some IR outside this function that would say:
1537 //
1538 //  !0 = !{ i32 1 }
1539 //
1540 // It's a LLVM IR metadata description.
1541 // Regardless, non-temporal moves are really dangerous for performance...
1542 void _mm_stream_ps (float* mem_addr, __m128 a)
1543 {
1544     __m128* dest = cast(__m128*)mem_addr;
1545     *dest = a; // it's a regular move instead
1546 }
1547 unittest
1548 {
1549     align(16) float[4] A;
1550     _mm_stream_ps(A.ptr, _mm_set1_ps(78.0f));
1551     assert(A[0] == 78.0f && A[1] == 78.0f && A[2] == 78.0f && A[3] == 78.0f);
1552 }
1553 
1554 __m128 _mm_sub_ps(__m128 a, __m128 b) pure @safe
1555 {
1556     return a - b;
1557 }
1558 unittest
1559 {
1560     __m128 a = [1.5f, -2.0f, 3.0f, 1.0f];
1561     a = _mm_sub_ps(a, a);
1562     float[4] correct = [0.0f, 0.0f, 0.0f, 0.0f];
1563     assert(a.array == correct);
1564 }
1565 
1566 __m128 _mm_sub_ss(__m128 a, __m128 b) pure @safe
1567 {
1568     static if (GDC_with_SSE)
1569         return __builtin_ia32_subss(a, b);
1570     else
1571     {
1572         a[0] -= b[0];
1573         return a;
1574     }
1575 }
1576 unittest
1577 {
1578     __m128 a = [1.5f, -2.0f, 3.0f, 1.0f];
1579     a = _mm_sub_ss(a, a);
1580     float[4] correct = [0.0f, -2.0, 3.0f, 1.0f];
1581     assert(a.array == correct);
1582 }
1583 
1584 
1585 void _MM_TRANSPOSE4_PS (ref __m128 row0, ref __m128 row1, ref __m128 row2, ref __m128 row3) pure @safe
1586 {
1587     __m128 tmp3, tmp2, tmp1, tmp0;
1588     tmp0 = _mm_unpacklo_ps(row0, row1);
1589     tmp2 = _mm_unpacklo_ps(row2, row3);
1590     tmp1 = _mm_unpackhi_ps(row0, row1);
1591     tmp3 = _mm_unpackhi_ps(row2, row3);
1592     row0 = _mm_movelh_ps(tmp0, tmp2);
1593     row1 = _mm_movehl_ps(tmp2, tmp0);
1594     row2 = _mm_movelh_ps(tmp1, tmp3);
1595     row3 = _mm_movehl_ps(tmp3, tmp1);
1596 }
1597 
1598 // Note: the only difference between these intrinsics is the signalling
1599 //       behaviour of quiet NaNs. This is incorrect but the case where
1600 //       you would want to differentiate between qNaN and sNaN and then
1601 //       treat them differently on purpose seems extremely rare.
1602 alias _mm_ucomieq_ss = _mm_comieq_ss;
1603 alias _mm_ucomige_ss = _mm_comige_ss;
1604 alias _mm_ucomigt_ss = _mm_comigt_ss;
1605 alias _mm_ucomile_ss = _mm_comile_ss;
1606 alias _mm_ucomilt_ss = _mm_comilt_ss;
1607 alias _mm_ucomineq_ss = _mm_comineq_ss;
1608 
1609 
1610 __m128 _mm_undefined_ps() pure @safe
1611 {
1612     __m128 undef = void;
1613     return undef;
1614 }
1615 
1616 __m128 _mm_unpackhi_ps (__m128 a, __m128 b) pure @trusted
1617 {
1618     __m128 r;
1619     r.ptr[0] = a.array[2];
1620     r.ptr[1] = b.array[2];
1621     r.ptr[2] = a.array[3];
1622     r.ptr[3] = b.array[3];
1623     return r;
1624 }
1625 
1626 __m128 _mm_unpacklo_ps (__m128 a, __m128 b) pure @trusted
1627 {
1628     __m128 r;
1629     r.ptr[0] = a.array[0];
1630     r.ptr[1] = b.array[0];
1631     r.ptr[2] = a.array[1];
1632     r.ptr[3] = b.array[1];
1633     return r;
1634 }
1635 
1636 __m128 _mm_xor_ps (__m128 a, __m128 b) pure @safe
1637 {
1638     return cast(__m128)(cast(__m128i)a ^ cast(__m128i)b);
1639 }
1640 
1641 
1642 private
1643 {
1644     /// Returns: `true` if the pointer is suitably aligned.
1645     bool isPointerAligned(void* p, size_t alignment) pure
1646     {
1647         assert(alignment != 0);
1648         return ( cast(size_t)p & (alignment - 1) ) == 0;
1649     }
1650 
1651     /// Returns: next pointer aligned with alignment bytes.
1652     void* nextAlignedPointer(void* start, size_t alignment) pure
1653     {
1654         return cast(void*)nextMultipleOf(cast(size_t)(start), alignment);
1655     }
1656 
1657     // Returns number of bytes to actually allocate when asking
1658     // for a particular alignment
1659     @nogc size_t requestedSize(size_t askedSize, size_t alignment) pure
1660     {
1661         enum size_t pointerSize = size_t.sizeof;
1662         return askedSize + alignment - 1 + pointerSize * 3;
1663     }
1664 
1665     // Store pointer given my malloc, size and alignment
1666     @nogc void* storeRawPointerPlusInfo(void* raw, size_t size, size_t alignment) pure
1667     {
1668         enum size_t pointerSize = size_t.sizeof;
1669         char* start = cast(char*)raw + pointerSize * 3;
1670         void* aligned = nextAlignedPointer(start, alignment);
1671         void** rawLocation = cast(void**)(cast(char*)aligned - pointerSize);
1672         *rawLocation = raw;
1673         size_t* sizeLocation = cast(size_t*)(cast(char*)aligned - 2 * pointerSize);
1674         *sizeLocation = size;
1675         size_t* alignmentLocation = cast(size_t*)(cast(char*)aligned - 3 * pointerSize);
1676         *alignmentLocation = alignment;
1677         assert( isPointerAligned(aligned, alignment) );
1678         return aligned;
1679     }
1680 
1681     // Returns: x, multiple of powerOfTwo, so that x >= n.
1682     @nogc size_t nextMultipleOf(size_t n, size_t powerOfTwo) pure nothrow
1683     {
1684         // check power-of-two
1685         assert( (powerOfTwo != 0) && ((powerOfTwo & (powerOfTwo - 1)) == 0));
1686 
1687         size_t mask = ~(powerOfTwo - 1);
1688         return (n + powerOfTwo - 1) & mask;
1689     }
1690 }
1691 
1692 unittest
1693 {
1694     assert(nextMultipleOf(0, 4) == 0);
1695     assert(nextMultipleOf(1, 4) == 4);
1696     assert(nextMultipleOf(2, 4) == 4);
1697     assert(nextMultipleOf(3, 4) == 4);
1698     assert(nextMultipleOf(4, 4) == 4);
1699     assert(nextMultipleOf(5, 4) == 8);
1700 
1701     {
1702         void* p = _mm_malloc(23, 16);
1703         assert(p !is null);
1704         assert(((cast(size_t)p) & 0xf) == 0);
1705         _mm_free(p);
1706     }
1707 
1708     void* nullAlloc = _mm_malloc(0, 32);
1709     assert(nullAlloc != null);
1710     _mm_free(nullAlloc);
1711 }