1 /**
2 * MMX intrinsics.
3 * https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=MMX
4 * 
5 * Copyright: Copyright Guillaume Piolat 2019-2020.
6 * License:   $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
7 */
8 module inteli.mmx;
9 
10 public import inteli.types;
11 import inteli.internals;
12 
13 import inteli.xmmintrin;
14 import inteli.emmintrin;
15 
16 nothrow @nogc:
17 
18 // Important: you don't need to call _mm_empty when using "MMX" capabilities of intel-intrinsics,
19 // since it just generates the right IR and cleaning-up FPU registers is up to the codegen.
20 // intel-intrinsics is just semantics.
21 // Even GDC does not seem to use mm0-mm7 registers, instead preferring xmm0-xmm7.
22 
23 
24 /// Add packed 16-bit integers in `a` and `b`.
25 __m64 _mm_add_pi16 (__m64 a, __m64 b)
26 {
27     return cast(__m64)(cast(short4)a + cast(short4)b);
28 }
29 unittest
30 {
31     short4 R = cast(short4) _mm_add_pi16(_mm_set1_pi16(4), _mm_set1_pi16(3));
32     short[4] correct = [7, 7, 7, 7];
33     assert(R.array == correct);
34 }
35 
36 /// Add packed 32-bit integers in `a` and `b`.
37 __m64 _mm_add_pi32 (__m64 a, __m64 b)
38 {
39     return cast(__m64)(cast(int2)a + cast(int2)b);
40 }
41 unittest
42 {
43     int2 R = cast(int2) _mm_add_pi32(_mm_set1_pi32(4), _mm_set1_pi32(3));
44     int[2] correct = [7, 7];
45     assert(R.array == correct);
46 }
47 
48 /// Add packed 8-bit integers in `a` and `b`.
49 __m64 _mm_add_pi8 (__m64 a, __m64 b)
50 {
51     return cast(__m64)(cast(byte8)a + cast(byte8)b);
52 }
53 unittest
54 {
55     byte8 R = cast(byte8) _mm_add_pi8(_mm_set1_pi8(127), _mm_set1_pi8(-128));
56     byte[8] correct = [-1, -1, -1, -1, -1, -1, -1, -1];
57     assert(R.array == correct);
58 }
59 
60 /// Add packed 16-bit integers in `a` and `b` using signed saturation.
61 // PERF: PADDSW not generated
62 __m64 _mm_adds_pi16(__m64 a, __m64 b) pure @trusted
63 {
64     return to_m64(_mm_adds_epi16(to_m128i(a), to_m128i(b)));
65 }
66 unittest
67 {
68     short4 res = cast(short4) _mm_adds_pi16(_mm_set_pi16(3, 2, 1, 0),
69                                             _mm_set_pi16(3, 2, 1, 0));
70     static immutable short[4] correctResult = [0, 2, 4, 6];
71     assert(res.array == correctResult);
72 }
73 
74 /// Add packed 8-bit integers in `a` and `b` using signed saturation.
75 // PERF: PADDSB not generated
76 __m64 _mm_adds_pi8(__m64 a, __m64 b) pure @trusted
77 {
78     return to_m64(_mm_adds_epi8(to_m128i(a), to_m128i(b)));
79 }
80 unittest
81 {
82     byte8 res = cast(byte8) _mm_adds_pi8(_mm_set_pi8(7, 6, 5, 4, 3, 2, 1, 0),
83                                          _mm_set_pi8(7, 6, 5, 4, 3, 2, 1, 0));
84     static immutable byte[8] correctResult = [0, 2, 4, 6, 8, 10, 12, 14];
85     assert(res.array == correctResult);
86 }
87 
88 /// Add packed 16-bit integers in `a` and `b` using unsigned saturation.
89 // PERF: PADDUSW not generated
90 __m64 _mm_adds_pu16(__m64 a, __m64 b) pure @trusted
91 {
92     return to_m64(_mm_adds_epu16(to_m128i(a), to_m128i(b)));
93 }
94 unittest
95 {
96     short4 res = cast(short4) _mm_adds_pu16(_mm_set_pi16(3, 2, cast(short)65535, 0),
97                                             _mm_set_pi16(3, 2, 1, 0));
98     static immutable short[4] correctResult = [0, cast(short)65535, 4, 6];
99     assert(res.array == correctResult);
100 }
101 
102 /// Add packed 8-bit integers in `a` and `b` using unsigned saturation.
103 // PERF: PADDUSB not generated
104 __m64 _mm_adds_pu8(__m64 a, __m64 b) pure @trusted
105 {
106     return to_m64(_mm_adds_epu8(to_m128i(a), to_m128i(b)));
107 }
108 unittest
109 {
110     byte8 res = cast(byte8) _mm_adds_pu8(_mm_set_pi8(7, 6, 5, 4, 3, 2, cast(byte)255, 0),
111                                          _mm_set_pi8(7, 6, 5, 4, 3, 2, 1, 0));
112     static immutable byte[8] correctResult = [0, cast(byte)255, 4, 6, 8, 10, 12, 14];
113     assert(res.array == correctResult);
114 }
115 
116 /// Compute the bitwise AND of 64 bits (representing integer data) in `a` and `b`.
117 __m64 _mm_and_si64 (__m64 a, __m64 b) pure @safe
118 {
119     return a & b;
120 }
121 unittest
122 {
123     __m64 A = [7];
124     __m64 B = [14];
125     __m64 R = _mm_and_si64(A, B);
126     assert(R.array[0] == 6);
127 }
128 
129 /// Compute the bitwise NOT of 64 bits (representing integer data) in `a` and then AND with `b`.
130 __m64 _mm_andnot_si64 (__m64 a, __m64 b)
131 {
132     return (~a) & b;
133 }
134 unittest
135 {
136     __m64 A = [7];
137     __m64 B = [14];
138     __m64 R = _mm_andnot_si64(A, B);
139     assert(R.array[0] == 8);
140 }
141 
142 /// Compare packed 16-bit integers in `a` and `b` for equality.
143 __m64 _mm_cmpeq_pi16 (__m64 a, __m64 b) pure @safe
144 {
145     static if (GDC_with_MMX)
146     {
147         return cast(__m64) __builtin_ia32_pcmpeqw(cast(short4)a, cast(short4)b);        
148     }
149     else
150     {
151         return cast(__m64) equalMask!short4(cast(short4)a, cast(short4)b);
152     }
153 }
154 unittest
155 {
156     short4   A = [-3, -2, -1,  0];
157     short4   B = [ 4,  3,  2,  1];
158     short[4] E = [ 0,  0,  0,  0];
159     short4   R = cast(short4)(_mm_cmpeq_pi16(cast(__m64)A, cast(__m64)B));
160     assert(R.array == E);
161 }
162 
163 /// Compare packed 32-bit integers in `a` and `b` for equality.
164 __m64 _mm_cmpeq_pi32 (__m64 a, __m64 b) pure @safe
165 {
166     static if (GDC_with_MMX)
167     {        
168         return cast(__m64) __builtin_ia32_pcmpeqd(cast(int2)a, cast(int2)b);
169     }
170     else
171     {
172         return cast(__m64) equalMask!int2(cast(int2)a, cast(int2)b);
173     }
174 }
175 unittest
176 {
177     int2   A = [-3, -2];
178     int2   B = [ 4, -2];
179     int[2] E = [ 0, -1];
180     int2   R = cast(int2)(_mm_cmpeq_pi32(cast(__m64)A, cast(__m64)B));
181     assert(R.array == E);
182 }
183 
184 /// Compare packed 8-bit integers in `a` and `b` for equality,
185 __m64 _mm_cmpeq_pi8 (__m64 a, __m64 b) pure @safe
186 {
187     static if (GDC_with_MMX)
188     {        
189         return cast(__m64) __builtin_ia32_pcmpeqb(cast(ubyte8)a, cast(ubyte8)b);
190     }
191     else
192     {
193         return cast(__m64) equalMask!byte8(cast(byte8)a, cast(byte8)b);
194     }
195 }
196 unittest
197 {
198     __m64 A = _mm_setr_pi8(1, 2, 3, 1, 2, 1, 1, 2);
199     __m64 B = _mm_setr_pi8(2, 2, 1, 2, 3, 1, 2, 3);
200     byte8 C = cast(byte8) _mm_cmpeq_pi8(A, B);
201     byte[8] correct =     [0,-1, 0, 0, 0,-1, 0, 0];
202     assert(C.array == correct);
203 }
204 
205 /// Compare packed 16-bit integers in `a` and `b` for greater-than.
206 __m64 _mm_cmpgt_pi16 (__m64 a, __m64 b) pure @safe
207 {
208     static if (GDC_with_MMX)
209     { 
210         return cast(__m64) __builtin_ia32_pcmpgtw (cast(short4)a, cast(short4)b);
211     }
212     else
213     {
214         return cast(__m64) greaterMask!short4(cast(short4)a, cast(short4)b);
215     }
216 }
217 unittest
218 {
219     short4   A = [-3, -2, -1,  0];
220     short4   B = [ 4,  3,  2,  1];
221     short[4] E = [ 0,  0,  0,  0];
222     short4   R = cast(short4)(_mm_cmpgt_pi16(cast(__m64)A, cast(__m64)B));
223     assert(R.array == E);
224 }
225 
226 /// Compare packed 32-bit integers in `a` and `b` for greater-than.
227 __m64 _mm_cmpgt_pi32 (__m64 a, __m64 b) pure @safe
228 {
229     static if (GDC_with_MMX)
230     {
231         return cast(__m64) __builtin_ia32_pcmpgtw (cast(short4)a, cast(short4)b);
232     }
233     else
234     {
235         return cast(__m64) greaterMask!int2(cast(int2)a, cast(int2)b);
236     }
237 }
238 unittest
239 {
240     int2   A = [-3,  2];
241     int2   B = [ 4, -2];
242     int[2] E = [ 0, -1];
243     int2   R = cast(int2)(_mm_cmpgt_pi32(cast(__m64)A, cast(__m64)B));
244     assert(R.array == E);
245 }
246 
247 /// Compare packed 8-bit integers in `a` and `b` for greater-than.
248 __m64 _mm_cmpgt_pi8 (__m64 a, __m64 b) pure @safe
249 {
250     static if (GDC_with_MMX)
251     {
252         return cast(__m64) __builtin_ia32_pcmpgtb (cast(ubyte8)a, cast(ubyte8)b);
253     }
254     else
255     {
256         return cast(__m64) greaterMask!byte8(cast(byte8)a, cast(byte8)b);
257     }
258 }
259 unittest
260 {
261     __m64 A = _mm_setr_pi8(1, 2, 3, 1, 2, 1, 1, 2);
262     __m64 B = _mm_setr_pi8(2, 2, 1, 2, 3, 1, 2, 3);
263     byte8 C = cast(byte8) _mm_cmpgt_pi8(A, B);
264     byte[8] correct =     [0, 0,-1, 0, 0, 0, 0, 0];
265     assert(C.array == correct);
266 }
267 
268 /// Copy 64-bit integer `a` to `dst`.
269 long _mm_cvtm64_si64 (__m64 a) pure @safe
270 {
271     long1 la = cast(long1)a;
272     return a.array[0];
273 }
274 unittest
275 {
276     __m64 A = _mm_setr_pi32(2, 1);
277     long1 lA = cast(long1)A;
278     assert(A.array[0] == 0x100000002);
279 }
280 
281 /// Copy 32-bit integer `a` to the lower elements of `dst`, and zero the upper element of `dst`.
282 __m64 _mm_cvtsi32_si64 (int a) pure @trusted
283 {
284     __m64 r = void;
285     r.ptr[0] = a;
286     return r;
287 }
288 unittest
289 {
290     __m64 R = _mm_cvtsi32_si64(-1);
291     assert(R.array[0] == -1);
292 }
293 
294 /// Copy 64-bit integer `a` to `dst`.
295 __m64 _mm_cvtsi64_m64 (long a) pure @trusted
296 {
297     __m64 r = void;
298     r.ptr[0] = a;
299     return r;
300 }
301 unittest
302 {
303     __m64 R = _mm_cvtsi64_m64(0x123456789A);
304     assert(R.array[0] == 0x123456789A);
305 }
306 
307 /// Get the lower 32-bit integer in `a`.
308 int _mm_cvtsi64_si32 (__m64 a) pure @safe
309 {
310     int2 r = cast(int2)a;
311     return r.array[0];
312 }
313 unittest
314 {
315     __m64 A = _mm_setr_pi32(-6, 5);
316     int R = _mm_cvtsi64_si32(A);
317     assert(R == -6);
318 }
319 
320 /// Empty the MMX state, which marks the x87 FPU registers as available for 
321 /// use by x87 instructions. 
322 /// This instruction is supposed to be used at the end of all MMX technology procedures.
323 /// But this is useless when using `intel-intrinsics`, with all D compilers.
324 void _mm_empty() pure @safe
325 {
326     // do nothing, see comment on top of file
327 }
328 
329 
330 deprecated alias _m_empty = _mm_empty; /// Deprecated intrinsics.
331 deprecated alias _m_from_int =  _mm_cvtsi32_si64; ///ditto
332 deprecated alias _m_from_int64 = _mm_cvtsi64_m64; ///ditto
333 
334 /// Multiply packed 16-bit integers in `a` and `b`, producing intermediate 32-bit integers. 
335 /// Horizontally add adjacent pairs of intermediate 32-bit integers
336 __m64 _mm_madd_pi16 (__m64 a, __m64 b) pure @safe
337 {
338     return to_m64(_mm_madd_epi16(to_m128i(a), to_m128i(b)));
339 }
340 unittest
341 {
342     short4 A = [-32768, -32768, 32767, 32767];
343     short4 B = [-32768, -32768, 32767, 32767];
344     int2 R = cast(int2) _mm_madd_pi16(cast(__m64)A, cast(__m64)B);
345     int[2] correct = [-2147483648, 2*32767*32767];
346     assert(R.array == correct);
347 }
348 
349 /// Multiply the packed 16-bit integers in `a` and `b`, producing intermediate 32-bit integers, 
350 /// and store the high 16 bits of the intermediate integers.
351 __m64 _mm_mulhi_pi16 (__m64 a, __m64 b) pure @safe
352 {
353     return to_m64(_mm_mulhi_epi16(to_m128i(a), to_m128i(b)));
354 }
355 unittest
356 {
357     __m64 A = _mm_setr_pi16(4, 8, -16, 7);
358     __m64 B = _mm_set1_pi16(16384);
359     short4 R = cast(short4)_mm_mulhi_pi16(A, B);
360     short[4] correct = [1, 2, -4, 1];
361     assert(R.array == correct);
362 }
363 
364 /// Multiply the packed 16-bit integers in `a` and `b`, producing intermediate 32-bit integers, 
365 /// and store the low 16 bits of the intermediate integers.
366 __m64 _mm_mullo_pi16 (__m64 a, __m64 b) pure @safe
367 {
368     return to_m64(_mm_mullo_epi16(to_m128i(a), to_m128i(b)));
369 }
370 unittest
371 {
372     __m64 A = _mm_setr_pi16(4, 1, 16, 7);
373     __m64 B = _mm_set1_pi16(16384);
374     short4 R = cast(short4)_mm_mullo_pi16(A, B);
375     short[4] correct = [0, 16384, 0, -16384];
376     assert(R.array == correct);
377 }
378 
379 /// Compute the bitwise OR of 64 bits in `a` and `b`.
380 __m64 _mm_or_si64 (__m64 a, __m64 b) pure @safe
381 {
382     return a | b;
383 }
384 unittest
385 {
386     __m64 A = _mm_setr_pi16(255, 1, -1, 0);
387     __m64 B = _mm_set1_pi16(15);
388     short4 R = cast(short4)_mm_or_si64(A, B);
389     short[4] correct =     [255, 15, -1, 15];
390     assert(R.array == correct);
391 }
392 
393 /// Convert packed 16-bit integers from `a` and `b` to packed 8-bit integers using signed saturation.
394 __m64 _mm_packs_pi16 (__m64 a, __m64 b) pure @trusted
395 {
396     int4 p = cast(int4) _mm_packs_epi16(to_m128i(a), to_m128i(b));
397     int2 r;
398     r.ptr[0] = p.array[0];
399     r.ptr[1] = p.array[2];
400     return cast(__m64)r;
401 }
402 unittest
403 {
404     __m64 A = _mm_setr_pi16(256, -129, 254, 0);
405     byte8 R = cast(byte8) _mm_packs_pi16(A, A);
406     byte[8] correct = [127, -128, 127, 0, 127, -128, 127, 0];
407     assert(R.array == correct);
408 }
409 
410 /// Convert packed 32-bit integers from `a` and `b` to packed 16-bit integers using signed saturation.
411 __m64 _mm_packs_pi32 (__m64 a, __m64 b) pure @trusted
412 {
413     int4 p = cast(int4) _mm_packs_epi32(to_m128i(a), to_m128i(b));
414     int2 r;
415     r.ptr[0] = p.array[0];
416     r.ptr[1] = p.array[2];
417     return cast(__m64)r;
418 }
419 unittest
420 {
421     __m64 A = _mm_setr_pi32(100000, -100000);
422     short4 R = cast(short4) _mm_packs_pi32(A, A);
423     short[4] correct = [32767, -32768, 32767, -32768];
424     assert(R.array == correct);
425 }
426 
427 /// Convert packed 16-bit integers from `a` and `b` to packed 8-bit integers using unsigned saturation.
428 __m64 _mm_packs_pu16 (__m64 a, __m64 b) pure @trusted
429 {
430     int4 p = cast(int4) _mm_packus_epi16(to_m128i(a), to_m128i(b));
431     int2 r;
432     r.ptr[0] = p.array[0];
433     r.ptr[1] = p.array[2];
434     return cast(__m64)r;
435 }
436 unittest
437 {
438     __m64 A = _mm_setr_pi16(256, -129, 254, 0);
439     byte8 R = cast(byte8) _mm_packs_pu16(A, A);
440     ubyte[8] correct = [255, 0, 254, 0, 255, 0, 254, 0];
441     assert(R.array == cast(byte[8])correct);
442 }
443 
444 deprecated alias
445     _m_packssdw = _mm_packs_pi32,     /// Deprecated intrinsics.
446     _m_packsswb = _mm_packs_pi16,     ///ditto
447     _m_packuswb = _mm_packs_pu16,     ///ditto
448     _m_paddb = _mm_add_pi8,           ///ditto
449     _m_paddd = _mm_add_pi32,          ///ditto
450     _m_paddsb = _mm_adds_pi8,         ///ditto
451     _m_paddsw = _mm_adds_pi16,        ///ditto
452     _m_paddusb = _mm_adds_pu8,        ///ditto
453     _m_paddusw = _mm_adds_pu16,       ///ditto
454     _m_paddw = _mm_add_pi16,          ///ditto
455     _m_pand = _mm_and_si64,           ///ditto
456     _m_pandn = _mm_andnot_si64,       ///ditto
457     _m_pcmpeqb = _mm_cmpeq_pi8,       ///ditto
458     _m_pcmpeqd = _mm_cmpeq_pi32,      ///ditto
459     _m_pcmpeqw = _mm_cmpeq_pi16,      ///ditto
460     _m_pcmpgtb = _mm_cmpgt_pi8,       ///ditto
461     _m_pcmpgtd = _mm_cmpgt_pi32,      ///ditto
462     _m_pcmpgtw = _mm_cmpgt_pi16,      ///ditto
463     _m_pmaddwd = _mm_madd_pi16,       ///ditto
464     _m_pmulhw = _mm_mulhi_pi16,       ///ditto
465     _m_pmullw = _mm_mullo_pi16,       ///ditto
466     _m_por = _mm_or_si64,             ///ditto
467     _m_pslld = _mm_sll_pi32,          ///ditto
468     _m_pslldi = _mm_slli_pi32,        ///ditto
469     _m_psllq = _mm_sll_si64,          ///ditto
470     _m_psllqi = _mm_slli_si64,        ///ditto
471     _m_psllw = _mm_sll_pi16,          ///ditto
472     _m_psllwi = _mm_slli_pi16,        ///ditto
473     _m_psrad = _mm_sra_pi32,          ///ditto
474     _m_psradi = _mm_srai_pi32,        ///ditto
475     _m_psraw = _mm_sra_pi16,          ///ditto
476     _m_psrawi = _mm_srai_pi16,        ///ditto
477     _m_psrld = _mm_srl_pi32,          ///ditto
478     _m_psrldi = _mm_srli_pi32,        ///ditto
479     _m_psrlq = _mm_srl_si64,          ///ditto
480     _m_psrlqi = _mm_srli_si64,        ///ditto
481     _m_psrlw = _mm_srl_pi16,          ///ditto
482     _m_psrlwi = _mm_srli_pi16,        ///ditto
483     _m_psubb = _mm_sub_pi8,           ///ditto
484     _m_psubd = _mm_sub_pi32,          ///ditto
485     _m_psubsb = _mm_subs_pi8,         ///ditto
486     _m_psubsw = _mm_subs_pi16,        ///ditto
487     _m_psubusb = _mm_subs_pu8,        ///ditto
488     _m_psubusw = _mm_subs_pu16,       ///ditto
489     _m_psubw = _mm_sub_pi16,          ///ditto
490     _m_punpckhbw = _mm_unpackhi_pi8,  ///ditto
491     _m_punpckhdq = _mm_unpackhi_pi32, ///ditto
492     _m_punpckhwd = _mm_unpackhi_pi16, ///ditto
493     _m_punpcklbw = _mm_unpacklo_pi8,  ///ditto
494     _m_punpckldq = _mm_unpacklo_pi32, ///ditto
495     _m_punpcklwd = _mm_unpacklo_pi16, ///ditto
496     _m_pxor = _mm_xor_si64;           ///ditto
497                 
498 /// Set packed 16-bit integers with the supplied values.
499 __m64 _mm_set_pi16 (short e3, short e2, short e1, short e0) pure @trusted
500 {
501     short[4] arr = [e0, e1, e2, e3];
502     return *cast(__m64*)(arr.ptr);
503 }
504 unittest
505 {
506     short4 R = cast(short4) _mm_set_pi16(3, 2, 1, 0);
507     short[4] correct = [0, 1, 2, 3];
508     assert(R.array == correct);
509 }
510 
511 /// Set packed 32-bit integers with the supplied values.
512 __m64 _mm_set_pi32 (int e1, int e0) pure @trusted
513 {
514     int[2] arr = [e0, e1];
515     return *cast(__m64*)(arr.ptr);
516 }
517 unittest
518 {
519     int2 R = cast(int2) _mm_set_pi32(1, 0);
520     int[2] correct = [0, 1];
521     assert(R.array == correct);
522 }
523 
524 /// Set packed 8-bit integers with the supplied values.
525 __m64 _mm_set_pi8 (byte e7, byte e6, byte e5, byte e4, byte e3, byte e2, byte e1, byte e0) pure @trusted
526 {
527     byte[8] arr = [e0, e1, e2, e3, e4, e5, e6, e7];
528     return *cast(__m64*)(arr.ptr);
529 }
530 unittest
531 {
532     byte8 R = cast(byte8) _mm_set_pi8(7, 6, 5, 4, 3, 2, 1, 0);
533     byte[8] correct = [0, 1, 2, 3, 4, 5, 6, 7];
534     assert(R.array == correct);
535 }
536 
537 /// Broadcast 16-bit integer `a` to all elements.
538 __m64 _mm_set1_pi16 (short a) pure @trusted
539 {
540     return cast(__m64)(short4(a));
541 }
542 unittest
543 {
544     short4 R = cast(short4) _mm_set1_pi16(44);
545     short[4] correct = [44, 44, 44, 44];
546     assert(R.array == correct);
547 }
548 
549 /// Broadcast 32-bit integer `a` to all elements.
550 __m64 _mm_set1_pi32 (int a) pure @trusted
551 {
552     return cast(__m64)(int2(a));
553 }
554 unittest
555 {
556     int2 R = cast(int2) _mm_set1_pi32(43);
557     int[2] correct = [43, 43];
558     assert(R.array == correct);
559 }
560 
561 /// Broadcast 8-bit integer `a` to all elements.
562 __m64 _mm_set1_pi8 (byte a) pure @trusted
563 {
564     return cast(__m64)(byte8(a));
565 }
566 unittest
567 {
568     byte8 R = cast(byte8) _mm_set1_pi8(42);
569     byte[8] correct = [42, 42, 42, 42, 42, 42, 42, 42];
570     assert(R.array == correct);
571 }
572 
573 /// Set packed 16-bit integers with the supplied values in reverse order.
574 __m64 _mm_setr_pi16 (short e3, short e2, short e1, short e0) pure @trusted
575 {
576     short[4] arr = [e3, e2, e1, e0];
577     return *cast(__m64*)(arr.ptr);
578 }
579 unittest
580 {
581     short4 R = cast(short4) _mm_setr_pi16(0, 1, 2, 3);
582     short[4] correct = [0, 1, 2, 3];
583     assert(R.array == correct);
584 }
585 
586 /// Set packed 32-bit integers with the supplied values in reverse order.
587 __m64 _mm_setr_pi32 (int e1, int e0) pure @trusted
588 {
589     int[2] arr = [e1, e0];
590     return *cast(__m64*)(arr.ptr);
591 }
592 unittest
593 {
594     int2 R = cast(int2) _mm_setr_pi32(0, 1);
595     int[2] correct = [0, 1];
596     assert(R.array == correct);
597 }
598 
599 /// Set packed 8-bit integers with the supplied values in reverse order.
600 __m64 _mm_setr_pi8 (byte e7, byte e6, byte e5, byte e4, byte e3, byte e2, byte e1, byte e0) pure @trusted
601 {
602     byte[8] arr = [e7, e6, e5, e4, e3, e2, e1, e0];
603     return *cast(__m64*)(arr.ptr);
604 }
605 unittest
606 {
607     byte8 R = cast(byte8) _mm_setr_pi8(0, 1, 2, 3, 4, 5, 6, 7);
608     byte[8] correct = [0, 1, 2, 3, 4, 5, 6, 7];
609     assert(R.array == correct);
610 }
611 
612 /// Return vector of type `__m64` with all elements set to zero.
613 __m64 _mm_setzero_si64 () pure @trusted
614 {
615     __m64 r; // PERF =void;
616     r.ptr[0] = 0;
617     return r;
618 }
619 unittest
620 {
621     __m64 R = _mm_setzero_si64();
622     assert(R.array[0] == 0);
623 }
624 
625 /// Shift packed 16-bit integers in `a` left by `bits` while shifting in zeros.
626 deprecated("Use _mm_slli_pi16 instead.") __m64 _mm_sll_pi16 (__m64 a, __m64 bits) pure @safe
627 {
628     return to_m64(_mm_sll_epi16(to_m128i(a), to_m128i(bits)));
629 }
630 
631 /// Shift packed 32-bit integers in `a` left by `bits` while shifting in zeros.
632 deprecated("Use _mm_slli_pi32 instead.") __m64 _mm_sll_pi32 (__m64 a, __m64 bits) pure @safe
633 {
634     return to_m64(_mm_sll_epi32(to_m128i(a), to_m128i(bits)));
635 }
636 
637 /// Shift 64-bit integer `a` left by `bits` while shifting in zeros.
638 deprecated("Use _mm_slli_si64 instead.") __m64 _mm_sll_si64 (__m64 a, __m64 bits) pure @safe
639 {
640     return to_m64(_mm_sll_epi64(to_m128i(a), to_m128i(bits)));
641 }
642 
643 /// Shift packed 16-bit integers in `a` left by `imm8` while shifting in zeros.
644 __m64 _mm_slli_pi16 (__m64 a, int imm8) pure @safe
645 {
646     return to_m64(_mm_slli_epi16(to_m128i(a), imm8));
647 }
648 unittest
649 {
650     __m64 A = _mm_setr_pi16(-4, -5, 6, 7);
651     short4 B = cast(short4)( _mm_slli_pi16(A, 1) );
652     short[4] correct = [ -8, -10, 12, 14 ];
653     assert(B.array == correct);
654 }
655 
656 /// Shift packed 32-bit integers in `a` left by `imm8` while shifting in zeros.
657 __m64 _mm_slli_pi32 (__m64 a, int imm8) pure @safe
658 {
659     return to_m64(_mm_slli_epi32(to_m128i(a), imm8));
660 }
661 unittest
662 {
663     __m64 A = _mm_setr_pi32(-4, 5);
664     int2 B = cast(int2)( _mm_slli_pi32(A, 1) );
665     int[2] correct = [ -8, 10 ];
666     assert(B.array == correct);
667 }
668 
669 /// Shift 64-bit integer `a` left by `imm8` while shifting in zeros.
670 __m64 _mm_slli_si64 (__m64 a, int imm8) pure @safe
671 {
672     return to_m64(_mm_slli_epi64(to_m128i(a), imm8));
673 }
674 unittest
675 {
676     __m64 A = _mm_cvtsi64_m64(-1);
677     long1 R = cast(long1)( _mm_slli_si64(A, 1) );
678     long[1] correct = [ -2 ];
679     assert(R.array == correct);
680 }
681 
682 /// Shift packed 16-bit integers in `a` right by `bits` while shifting in sign bits.
683 deprecated("Use _mm_srai_pi16 instead.") __m64 _mm_sra_pi16 (__m64 a, __m64 bits) pure @safe
684 {
685     return to_m64(_mm_sra_epi16(to_m128i(a), to_m128i(bits)));
686 }
687 
688 /// Shift packed 32-bit integers in `a` right by `bits` while shifting in sign bits.
689 deprecated("Use _mm_srai_pi32 instead.") __m64 _mm_sra_pi32 (__m64 a, __m64 bits) pure @safe
690 {
691     return to_m64(_mm_sra_epi32(to_m128i(a), to_m128i(bits)));
692 }
693 
694 /// Shift packed 16-bit integers in `a` right by `imm8` while shifting in sign bits.
695 __m64 _mm_srai_pi16 (__m64 a, int imm8) pure @safe
696 {
697     return to_m64(_mm_srai_epi16(to_m128i(a), imm8));
698 }
699 unittest
700 {
701     __m64 A = _mm_setr_pi16(-4, -5, 6, 7);
702     short4 B = cast(short4)( _mm_srai_pi16(A, 1) );
703     short[4] correct = [ -2, -3, 3, 3 ];
704     assert(B.array == correct);
705 }
706 
707 /// Shift packed 32-bit integers in `a` right by `imm8` while shifting in sign bits.
708 __m64 _mm_srai_pi32 (__m64 a, int imm8) pure @safe
709 {
710     return to_m64(_mm_srai_epi32(to_m128i(a), imm8));
711 }
712 unittest
713 {
714     __m64 A = _mm_setr_pi32(-4, 5);
715     int2 B = cast(int2)( _mm_srai_pi32(A, 1) );
716     int[2] correct = [ -2, 2 ];
717     assert(B.array == correct);
718 }
719 
720 /// Shift packed 16-bit integers in `a` right by `bits` while shifting in zeros.
721 deprecated("Use _mm_srli_pi16 instead.") __m64 _mm_srl_pi16 (__m64 a, __m64 bits) pure @safe
722 {
723     return to_m64(_mm_srl_epi16(to_m128i(a), to_m128i(bits)));
724 }
725 
726 /// Shift packed 32-bit integers in `a` right by `bits` while shifting in zeros.
727 deprecated("Use _mm_srli_pi32 instead.") __m64 _mm_srl_pi32 (__m64 a, __m64 bits) pure @safe
728 {
729     return to_m64(_mm_srl_epi32(to_m128i(a), to_m128i(bits)));
730 }
731 
732 /// Shift 64-bit integer `a` right by `bits` while shifting in zeros.
733 deprecated("Use _mm_srli_si64 instead.") __m64 _mm_srl_si64 (__m64 a, __m64 bits) pure @safe
734 {
735     return to_m64(_mm_srl_epi64(to_m128i(a), to_m128i(bits)));
736 }
737 
738 /// Shift packed 16-bit integers in `a` right by `imm8` while shifting in zeros.
739 __m64 _mm_srli_pi16 (__m64 a, int imm8) pure @safe
740 {
741     return to_m64(_mm_srli_epi16(to_m128i(a), imm8));
742 }
743 unittest
744 {
745     __m64 A = _mm_setr_pi16(-4, -5, 6, 7);
746     short4 B = cast(short4)( _mm_srli_pi16(A, 1) );
747     short[4] correct = [ 0x7ffe, 0x7ffd, 3, 3 ];
748     assert(B.array == correct);
749 }
750 
751 /// Shift packed 32-bit integers in `a` right by `imm8` while shifting in zeros.
752 __m64 _mm_srli_pi32 (__m64 a, int imm8) pure @safe
753 {
754     return to_m64(_mm_srli_epi32(to_m128i(a), imm8));
755 }
756 unittest
757 {
758     __m64 A = _mm_setr_pi32(-4, 5);
759     int2 B = cast(int2)( _mm_srli_pi32(A, 1) );
760     int[2] correct = [ 0x7ffffffe, 2 ];
761     assert(B.array == correct);
762 }
763 
764 /// Shift 64-bit integer `a` right by `imm8` while shifting in zeros.
765 __m64 _mm_srli_si64 (__m64 a, int imm8) pure @safe
766 {
767     return to_m64(_mm_srli_epi64(to_m128i(a), imm8));
768 }
769 unittest
770 {
771     __m64 A = _mm_cvtsi64_m64(-1);
772     long1 R = cast(long1)( _mm_srli_si64(A, 1) );
773     long[1] correct = [ 0x7fff_ffff_ffff_ffff ];
774     assert(R.array == correct);
775 }
776 
777 /// Subtract packed 16-bit integers in `b` from packed 16-bit integers in `a`.
778 __m64 _mm_sub_pi16 (__m64 a, __m64 b) pure @safe
779 {
780     return cast(__m64)(cast(short4)a - cast(short4)b);
781 }
782 unittest
783 {
784     short4 R = cast(short4) _mm_sub_pi16(_mm_setr_pi16(cast(short)65534,  1, 5, -32768),
785                                          _mm_setr_pi16(cast(short)65535, 16, 4, 4));
786     static immutable short[4] correct =                            [ -1,-15, 1, 32764];
787     assert(R.array == correct);
788 }
789 
790 /// Subtract packed 32-bit integers in `b` from packed 32-bit integers in `a`.
791 __m64 _mm_sub_pi32 (__m64 a, __m64 b) pure @safe
792 {
793     return cast(__m64)(cast(int2)a - cast(int2)b);
794 }
795 unittest
796 {
797     int2 R = cast(int2) _mm_sub_pi32(_mm_setr_pi32( 10,   4),
798                                      _mm_setr_pi32( 15, -70));
799     static immutable int[2] correct =             [ -5,  74];
800     assert(R.array == correct);
801 }
802 
803 /// Subtract packed 8-bit integers in `b` from packed 8-bit integers in `a`.
804 __m64 _mm_sub_pi8 (__m64 a, __m64 b) pure @safe
805 {
806     return cast(__m64)(cast(byte8)a - cast(byte8)b);
807 }
808 unittest
809 {
810     byte8 R = cast(byte8) _mm_sub_pi8(_mm_setr_pi8(cast(byte)254, 127, 13, 12, 11, 10, 9, -128),
811                                       _mm_setr_pi8(cast(byte)255, 120, 14, 42, 11, 10, 9, 8));
812     static immutable byte[8] correct =                 [      -1,   7, -1,-30,  0,  0, 0, 120 ];
813     assert(R.array == correct);
814 }
815 
816 /// Subtract packed 16-bit integers in `b` from packed 16-bit integers in `a` using saturation.
817 __m64 _mm_subs_pi16 (__m64 a, __m64 b) pure @safe
818 {
819     return to_m64(_mm_subs_epi16(to_m128i(a), to_m128i(b)));
820 }
821 unittest
822 {
823     short4 R = cast(short4) _mm_subs_pi16(_mm_setr_pi16(cast(short)65534,  1, 5, -32768),
824                                           _mm_setr_pi16(cast(short)65535, 16, 4, 4));
825     static immutable short[4] correct =                             [ -1,-15, 1, -32768];
826     assert(R.array == correct);
827 }
828 
829 /// Subtract packed 8-bit integers in `b` from packed 8-bit integers in `a` using saturation.
830 __m64 _mm_subs_pi8 (__m64 a, __m64 b) pure @safe
831 {
832     return to_m64(_mm_subs_epi8(to_m128i(a), to_m128i(b)));
833 }
834 unittest
835 {
836     byte8 R = cast(byte8) _mm_subs_pi8(_mm_setr_pi8(cast(byte)254, 127, 13, 12, 11, 10, 9, -128),
837                                        _mm_setr_pi8(cast(byte)255, 120, 14, 42, 11, 10, 9, 8));
838     static immutable byte[8] correct =                 [       -1,   7, -1,-30,  0,  0, 0, -128 ];
839     assert(R.array == correct);
840 }
841 
842 /// Subtract packed unsigned 16-bit integers in `b` from packed unsigned 16-bit integers in `a` 
843 /// using saturation.
844 __m64 _mm_subs_pu16 (__m64 a, __m64 b) pure @safe
845 {
846     return to_m64(_mm_subs_epu16(to_m128i(a), to_m128i(b)));
847 }
848 unittest
849 {
850     short4 R = cast(short4) _mm_subs_pu16(_mm_setr_pi16(cast(short)65534,  1, 5, 4),
851                                           _mm_setr_pi16(cast(short)65535, 16, 4, 4));
852     static immutable short[4] correct =                              [ 0,  0, 1, 0];
853     assert(R.array == correct);
854 }
855 
856 /// Subtract packed unsigned 8-bit integers in `b` from packed unsigned 8-bit integers in `a` 
857 /// using saturation.
858 __m64 _mm_subs_pu8 (__m64 a, __m64 b) pure @safe
859 {
860     return to_m64(_mm_subs_epu8(to_m128i(a), to_m128i(b)));
861 }
862 unittest
863 {
864     byte8 R = cast(byte8) _mm_subs_pu8(_mm_setr_pi8(cast(byte)254, 127, 13, 12, 11, 10, 9, 8),
865                                        _mm_setr_pi8(cast(byte)255, 120, 14, 42, 11, 10, 9, 8));
866     static immutable byte[8] correct =                 [        0,   7,  0,  0,  0,  0, 0, 0, ];
867     assert(R.array == correct);
868 }
869 
870 deprecated alias _m_to_int = _mm_cvtsi64_si32;  /// Deprecated intrinsics.
871 deprecated alias _m_to_int64 = _mm_cvtm64_si64; ///ditto
872 
873 /// Unpack and interleave 16-bit integers from the high half of `a` and `b`.
874 __m64 _mm_unpackhi_pi16 (__m64 a, __m64 b) pure @trusted
875 {   
876     version(LDC)
877     {
878         return cast(__m64) shufflevectorLDC!(short4, 2, 6, 3, 7)(cast(short4)a, cast(short4)b);
879     }
880     else
881     {
882         short4 ia = cast(short4)a;
883         short4 ib = cast(short4)b;
884         short4 r;
885         r.ptr[0] = ia.array[2];
886         r.ptr[1] = ib.array[2];
887         r.ptr[2] = ia.array[3];
888         r.ptr[3] = ib.array[3];
889         return cast(__m64)r;
890     }
891 }
892 unittest
893 {
894     __m64 A = _mm_setr_pi16(4, 8, -16, 7);
895     __m64 B = _mm_setr_pi16(5, 9,  -3, 10);
896     short4 R = cast(short4) _mm_unpackhi_pi16(A, B);
897     short[4] correct = [-16, -3, 7, 10];
898     assert(R.array == correct);
899 }
900 
901 /// Unpack and interleave 32-bit integers from the high half of `a` and `b`.
902 __m64 _mm_unpackhi_pi32 (__m64 a, __m64 b) pure @trusted
903 {
904     // Generate punpckldq as far back as LDC 1.0.0 -O1
905     // (Yes, LLVM does generate punpckldq to reuse SSE2 instructions)
906     int2 ia = cast(int2)a;
907     int2 ib = cast(int2)b;
908     int2 r;
909     r.ptr[0] = ia.array[1];
910     r.ptr[1] = ib.array[1];
911     return cast(__m64)r;
912 }
913 unittest
914 {
915     __m64 A = _mm_setr_pi32(4, 8);
916     __m64 B = _mm_setr_pi32(5, 9);
917     int2 R = cast(int2) _mm_unpackhi_pi32(A, B);
918     int[2] correct = [8, 9];
919     assert(R.array == correct);
920 }
921 
922 /// Unpack and interleave 8-bit integers from the high half of `a` and `b`.
923 __m64 _mm_unpackhi_pi8 (__m64 a, __m64 b)
924 {
925     version(LDC)
926     {
927         return cast(__m64) shufflevectorLDC!(byte8, 4, 12, 5, 13, 6, 14, 7, 15)(cast(byte8)a, cast(byte8)b);
928     }
929     else
930     {
931         byte8 ia = cast(byte8)a;
932         byte8 ib = cast(byte8)b;
933         byte8 r;
934         r.ptr[0] = ia.array[4];
935         r.ptr[1] = ib.array[4];
936         r.ptr[2] = ia.array[5];
937         r.ptr[3] = ib.array[5];
938         r.ptr[4] = ia.array[6];
939         r.ptr[5] = ib.array[6];
940         r.ptr[6] = ia.array[7];
941         r.ptr[7] = ib.array[7];
942         return cast(__m64)r;
943     }
944 }
945 unittest
946 {
947     __m64 A = _mm_setr_pi8( 1,  2,  3,  4,  5,  6,  7,  8);
948     __m64 B = _mm_setr_pi8(-1, -2, -3, -4, -5, -6, -7, -8);
949     byte8 R = cast(byte8) _mm_unpackhi_pi8(A, B);
950     byte[8] correct = [5, -5, 6, -6, 7, -7, 8, -8];
951     assert(R.array == correct);
952 }
953 
954 /// Unpack and interleave 16-bit integers from the low half of `a` and `b`.
955 __m64 _mm_unpacklo_pi16 (__m64 a, __m64 b)
956 {
957     // Generates punpcklwd since LDC 1.0.0 -01
958     short4 ia = cast(short4)a;
959     short4 ib = cast(short4)b;
960     short4 r;
961     r.ptr[0] = ia.array[0];
962     r.ptr[1] = ib.array[0];
963     r.ptr[2] = ia.array[1];
964     r.ptr[3] = ib.array[1];
965     return cast(__m64)r;
966 }
967 unittest
968 {
969     __m64 A = _mm_setr_pi16(4, 8, -16, 7);
970     __m64 B = _mm_setr_pi16(5, 9,  -3, 10);
971     short4 R = cast(short4) _mm_unpacklo_pi16(A, B);
972     short[4] correct = [4, 5, 8, 9];
973     assert(R.array == correct);
974 }
975 
976 /// Unpack and interleave 32-bit integers from the low half of `a` and `b`.
977 __m64 _mm_unpacklo_pi32 (__m64 a, __m64 b) pure @trusted
978 {
979     // x86: Generate punpckldq as far back as LDC 1.0.0 -O1
980     // ARM: Generate zip as far back as LDC 1.8.0 -O1
981     int2 ia = cast(int2)a;
982     int2 ib = cast(int2)b;
983     int2 r;
984     r.ptr[0] = ia.array[0];
985     r.ptr[1] = ib.array[0];
986     return cast(__m64)r;
987 }
988 unittest
989 {
990     __m64 A = _mm_setr_pi32(4, 8);
991     __m64 B = _mm_setr_pi32(5, 9);
992     int2 R = cast(int2) _mm_unpacklo_pi32(A, B);
993     int[2] correct = [4, 5];
994     assert(R.array == correct);
995 }
996 
997 /// Unpack and interleave 8-bit integers from the low half of `a` and `b`.
998 __m64 _mm_unpacklo_pi8 (__m64 a, __m64 b)
999 {
1000     version(LDC)
1001     {
1002         return cast(__m64) shufflevectorLDC!(byte8, 0, 8, 1, 9, 2, 10, 3, 11)(cast(byte8)a, cast(byte8)b);
1003     }
1004     else
1005     {
1006         byte8 ia = cast(byte8)a;
1007         byte8 ib = cast(byte8)b;
1008         byte8 r;
1009         r.ptr[0] = ia.array[0];
1010         r.ptr[1] = ib.array[0];
1011         r.ptr[2] = ia.array[1];
1012         r.ptr[3] = ib.array[1];
1013         r.ptr[4] = ia.array[2];
1014         r.ptr[5] = ib.array[2];
1015         r.ptr[6] = ia.array[3];
1016         r.ptr[7] = ib.array[3];
1017         return cast(__m64)r;
1018     }
1019 }
1020 unittest
1021 {
1022     __m64 A = _mm_setr_pi8( 1,  2,  3,  4,  5,  6,  7,  8);
1023     __m64 B = _mm_setr_pi8(-1, -2, -3, -4, -5, -6, -7, -8);
1024     byte8 R = cast(byte8) _mm_unpacklo_pi8(A, B);
1025     byte[8] correct = [1, -1, 2, -2, 3, -3, 4, -4];
1026     assert(R.array == correct);
1027 }
1028 
1029 /// Compute the bitwise XOR of 64 bits (representing integer data) in `a` and `b`.
1030 __m64 _mm_xor_si64 (__m64 a, __m64 b)
1031 {
1032     return a ^ b;
1033 }
1034 unittest
1035 {
1036     __m64 A = _mm_setr_pi16(255, 1, -1, 0);
1037     __m64 B = _mm_set1_pi16(15);
1038     short4 R = cast(short4)_mm_xor_si64(A, B);
1039     short[4] correct =     [240, 14, -16, 15];
1040     assert(R.array == correct);
1041 }
1042